Insight into catalysis through novel study of X-ray absorption spectroscopy

An international team has made a breakthrough at BESSY II.

For the first time, they succeeded in investigating electronic states of a transition metal in detail and drawing reliable conclusions on their catalytic effect from the data. These results are helpful for the development of future applications of catalytic transition-metal systems. The work has now been published in Chemical Science, the Open Access journal of the Royal Society of Chemistry.

Many important processes in nature depend on catalysts, which are atoms or molecules that facilitate a reaction, but emerge from it themselves unchanged. One example is photosynthesis in plants, which is only possible with the help of a protein complex comprising four manganese atom sites at its centre. Redox reactions, as they are referred to, often play a pivotal role in these types of processes. The reactants are reduced through uptake of electrons, or oxidized through their release. Catalytic redox processes in nature and industry often only succeed thanks to suitable catalysts, where transition metals supply an important function.

>Read more about on the BESSY II at HZB website

Image: Manganese compounds also play a role as catalysts in photosynthesis.
Credit: HZB

New class of single atoms catalysts for carbon nanotubes

They exhibit outstanding electrochemical reduction of CO2 to CO.

Experiments using X-rays on two beamlines at the Australian Synchrotron have helped characterise a new class of single atom catalysts (SACs) supported on carbon nanotubes that exhibit outstanding electrochemical reduction of CO2 to CO. A weight loading of 20 wt% for the new class, nickel single atom nitrogen doped carbon nanotubes (NiSA-N-CNTs), is believed to be the highest metal loading for SACs reported to date.

Single atoms of nickel, cobalt and iron were supported on nitrogen doped carbon nanotubes via a one-pot pyrolysis method and compared in the study.

A large international collaboration, led by Prof San Ping Jiang, Deputy Director of the Fuels and Energy Technology Institute at the Curtin University of Technology and associates from the Department of Chemical Engineering, have developed a new synthesis and development process for nitrogen-doped carbon nanotubes with a nickel ligand that demonstrate high catalytic activity.

The study was published in Advanced Materials and featured on the inside cover of the publication.

Dr Bernt Johannessen, instrument scientist on the X-ray absorption spectroscopy (XAS) beamline at the Australian Synchrotron was a co-author on the paper, which also included lead investigators from Curtin University of Technology and collaborators at the University of Western Australia, Institute of Metal Research (China), Oak Ridge National Laboratory (US), University of the Sunshine Coast, University of Queensland, Tsinghua University (China) and King Abdulaziz University (Saudi Arabia). Technical support and advice on the soft X-ray spectroscopy experiments was provided by Australian Synchrotron instrument scientist Dr Bruce Cowie.

>Read more on the Australian Synchrotron website

Image: extract of the cover of Advanced Materials.