Cyborg plants: roots can store energy

Researchers of the HyPhOE European Project have developed biohybrid plants with an electronic root system, which could be used to store energy or as electronic sensors. This study proved the integration of circuits and electrochemical devices into the plants without damaging them, so that they continued to grow and adapt to their new hybrid state. Experiments at the NCD-SWEET beamline of the ALBA Synchrotron were crucial to shed light on the plant-based technology field.

Plants are amazing machines: not only they are solar-powered and convert carbon dioxide into chemical energy, but they are also capable of producing cellulose, the most abundant biopolymer on Earth, and can self-repair via tissue regeneration. All these factors make plants the perfect candidates for developing biohybrid technological systems, integrating smart materials and devices into their structure.

In a recent publication, the team led by researcher Eleni Stavrinidou from the Linköping University (Sweden) has presented a study about biohybrid plants with an electronic root system. They found out how to integrate circuits and electrochemical devices into the plants without damaging them, so that they can continue to grow and develop, and use them as supercapacitors or electronic sensors.

The results pave the way for using roots for energy storage and the creation of a root-based supercapacitor. Supercapacitors based on conductive polymers and cellulose offer an environmentally friendly alternative for energy storage that may also be more affordable than those currently in use. As a proof of concept, the research team built a supercapacitor where the roots served as the charge storage electrodes.

Another possible application of these plant-based systems are electronic sensors. For example, by adding a humidity sensor in the root, the information could be transmitted through the electronic root network to an intelligent system, which could act accordingly by increasing or decreasing the frequency of irrigation. These discoveries open the door to new intelligent stimulus-response applications.

This study is part of the European project Hybrid Electronics Based on Photosynthetic Organisms (HyPhOE), which involves several European institutions and aims to achieve a symbiosis between photosynthetic organisms and technology.

Read more on the ALBA website

Image: Bean plant before, during and after functionalization

A properly tailored tail boosts solar-cell efficiency

With the help of structural insights from the Advanced Light Source (ALS), researchers optimized the fit between organic and inorganic ions in a perovskite solar-cell material.

The work increased the material’s power-conversion efficiency and stability and opens up a new avenue for improving the current-carrier dynamics of a promising class of materials.

A photovoltaic rising star

To address the effects of global climate change, it’s essential that we capitalize on energy from the sun. However, although solar energy is freely available, it needs to be converted into usable electricity in a way that’s efficient, cost-effective, and commercially scalable.

Perovskites are high-performance inorganic semiconductors recognized as some of the most promising photovoltaic materials of the future. Perovskite films—thin, lightweight, and flexible—can be produced using low-cost solution-processing techniques, and their power-conversion efficiencies (PCEs) have rapidly risen to the brink of 30% in just 15 years, surpassing conventional silicon panels.

A structure with room to tinker

The most intriguing perovskite materials today are organic–inorganic hybrids. They have the general formula ABX3, in which the inorganic B and X ions form a framework of octahedral cages, and the organic A ions are located in the spaces between the cages.

Previously, it was thought that perovskite electronic performance mainly depended on the B and X electronic orbitals, and that A merely served a structural function. In this work, researchers showed that A-site organic ions with specially designed characteristics can increase charge-carrier mobility and power conversion efficiency while also improving device stability.

Read more on the ALS website

Image: Left: The basic structure of perovskite, a promising solar-cell material, has three types of sites, A (blue), B (gray), and X (purple). Right: By attaching organic tails to the interstitial “A” sites (and testing different linker lengths), researchers improved the material’s photovoltaic response.