Extending the longevity of perovskite solar cells for cheaper solar energy

Study reveals the secret to treating the ‘Achilles’ heel’ of alternatives to silicon solar panels for the photovoltaics industry

Diamond’s Nanoprobe beamline I14 and the electron Physical Science Imaging Centre (ePSIC) were used by a multidisciplinary team of researchers to gain new insight into the perovskite materials that hold so much potential in the field of optoelectronics. Focusing on structural changes that can lead to degradation, the Diamond instruments were part of a suite that enabled the group to observe the nanoscale properties of thin films of perovskite materials and how they change over time under solar illumination. The research, recently published in Nature, could significantly accelerate the development of long-lasting, commercially available perovskite photovoltaics.  

Perovskite materials offer a cheaper alternative to silicon for producing solar cells and also show great potential for other optoelectronic applications, such as energy efficient LEDs and X-ray detectors.

The metal halide salts are abundant and much cheaper to process than crystalline silicon. They can be prepared in a liquid ink that is simply printed to produce a thin film of the material.

While the overall energy output of perovskite solar cells can often meet or – in the case of multi-layered, so-called ‘tandem’ devices – exceed that achievable with traditional silicon photovoltaics, the limited longevity of the devices is a key barrier to their commercial viability.

A typical silicon solar panel, like those you might see on the roof of a house, typically lasts about 20-25 years without significant performance losses.

Because perovskite devices are much cheaper to produce, they may not need to have as long a lifetime as their silicon counterparts at least to enter some markets – but to fulfil their ultimate potential in realising widespread decarbonisation, cells will need to operate for at least a decade or more. Researchers and manufacturers have yet to develop a device with similar stability to silicon cells.

Now, researchers at the Department of Chemical Engineering and Biotechnology (CEB) and Cavendish Laboratory at the University of Cambridge, together with the Okinawa Institute of Science and Technology (OIST) in Japan, have discovered that the defects that limit perovskite efficiency are also responsible for structural changes in the material that lead to degradation.

Read more on the Diamond website

Image: A typical silicon solar panel, like those you might see on the roof of a house, typically lasts about 20-25 years without significant performance losses

New angle for perovskite research

Perovskite materials offer the potential for cheaper optoelectronic devices such as solar cells. Of these, the formamidinium (FA)-based FAPbI3 crystal is one of the most promising – it has a bandgap close to ideal and is very thermally stable. However, photoactive cubic (α)-FAPbI3 perovskite phase is highly unstable and quickly transforms into the non-perovskite yellow phase at room temperature in ambient atmosphere, which affects the performance of photovoltaic devices. Alloying of FA-based perovskite with caesium, methylammonium (MA) cations or a combination of both can keep the perovskite in its more efficient phase at lower temperatures. However, this can give patchy results, leading to power losses.

In work recently published in Science, researchers from the University of Cambridge Department of Chemical Engineering and Biotechnology (CEB) and the Cavendish Laboratory investigated the crystal structure of the alloyed perovskite materials to understand why adding cations improved their performance. Their results show that cation alloying induces a minor octahedral tilt that keeps the perovskite material in its highly efficient phase, and is a step towards commercial production of stable and efficient perovskite-based solar cells. 

A small distortion makes a big difference

Formamidinium (FA)-based perovskites have much better thermal stability than the methylammonium (MA)-based absorber layers commonly used in early perovskite-based solar cells. FAPbI3 is a particularly promising material, but its photoactive phase is only stable at high temperatures (above 150ºC) in inert atmosphere. It transitions to a hexagonal phase with poor optoelectronic performance at lower temperatures.  

It has been shown empirically that alloying FAPbI3 with methylammonium (MA) cations or caesium (or both) improves stability. However, although this approach led to record efficiencies, the mechanism underlying it was not fully understood. It also produces uneven materials with patches of instability that lead to performance losses. 

Co-lead author Tiarnan Doherty was a PhD student at the Cavendish Laboratory and is now an Oppenheimer Fellow in CEB. He says:

We wanted to investigate the atomic structure of the alloyed perovskite materials, but they’re very sensitive to damage. So we brought the samples to ePSIC for high-resolution electron microscopy with a low electron dose. We also used nano X-ray diffraction on beamline I14. That beamline has very sensitive detectors, which allowed us to achieve our results using low X-ray exposures.

Read more on the Diamond website

Image: Artist’s impression of formamidinium (FA)-based crystal

Credit: Tiarnan Doherty, University of Cambridge

World changing science

Marion Flatken is a 3rd year PhD student working in the Department Novel Materials and Interfaces for photovoltaic solar cells led by Prof. Dr. Antonio Abate, at HZB.

In her #LightSourceSelfie, Marion describes the perovskite solar cell research she is undertaking and reflects on the opportunity light sources present to scientists.  She says,

“We are really having the chance to work in a unique environment and to use the knowledge and the facilities and the resources that we have to really change the world literally.”

Marion Flatken’s #LightSourceSelfie

Beamline filming location: HZB ASAXS-Instrument, FCM-beamline at PTB laboratory (Physikalisch-Technische Bundesanstalt), BESSYII

A properly tailored tail boosts solar-cell efficiency

With the help of structural insights from the Advanced Light Source (ALS), researchers optimized the fit between organic and inorganic ions in a perovskite solar-cell material.

The work increased the material’s power-conversion efficiency and stability and opens up a new avenue for improving the current-carrier dynamics of a promising class of materials.

A photovoltaic rising star

To address the effects of global climate change, it’s essential that we capitalize on energy from the sun. However, although solar energy is freely available, it needs to be converted into usable electricity in a way that’s efficient, cost-effective, and commercially scalable.

Perovskites are high-performance inorganic semiconductors recognized as some of the most promising photovoltaic materials of the future. Perovskite films—thin, lightweight, and flexible—can be produced using low-cost solution-processing techniques, and their power-conversion efficiencies (PCEs) have rapidly risen to the brink of 30% in just 15 years, surpassing conventional silicon panels.

A structure with room to tinker

The most intriguing perovskite materials today are organic–inorganic hybrids. They have the general formula ABX3, in which the inorganic B and X ions form a framework of octahedral cages, and the organic A ions are located in the spaces between the cages.

Previously, it was thought that perovskite electronic performance mainly depended on the B and X electronic orbitals, and that A merely served a structural function. In this work, researchers showed that A-site organic ions with specially designed characteristics can increase charge-carrier mobility and power conversion efficiency while also improving device stability.

Read more on the ALS website

Image: Left: The basic structure of perovskite, a promising solar-cell material, has three types of sites, A (blue), B (gray), and X (purple). Right: By attaching organic tails to the interstitial “A” sites (and testing different linker lengths), researchers improved the material’s photovoltaic response.

Perfect recipe for efficient perovskite solar cells

A long-cherished dream of materials researchers is a solar cell that converts sunlight into electrical energy as efficiently as silicon, but that can be easily and inexpensively fabricated from abundant materials. Scientists at the Helmholtz-Zentrum Berlin have now come a step closer to achieving this. They have improved a process for vertically depositing a solution made from an inexpensive perovskite solute onto a moving substrate below. Not only have they discovered the crucial role played by one of the solvents used, but they have also taken a closer look at the aging and storage properties of the solution.

Solar cells made of crystalline silicon still account for the lion’s share of roof installations and solar farms. But other technologies have long since become established as well – such as those that convert sunlight into electrical energy through use of extremely thin layers of solar-cell material deposited upon a substrate. The perovskite solar cells that Prof. Eva Unger and her team at the Helmholtz-Zentrum Berlin (HZB) are researching belong to this group. “These are the best solar cells to date that can be made using a 2D ink”, the researcher explains. “And now their efficiencies are approaching those for cells made of crystalline silicon.”

Read more on the HZB website

Image: The liquid solution of perovskite precursor, solvent, and additive flows from a slit-shaped nozzle onto the glass substrate being conveyed below.

Credit: © Jinzhao Li / HZB

Hybrid photoactive perovskites imaged with atomic resolution for the first-time

A huge step towards better performing solar cells – a collaboration identified information previously invisible using Diamond’s ePSIC microscopes of Oxford University’s Departments of Materials and Physics

A new technique has been developed allowing reliable atomic-resolution images to be taken, for the first time, of hybrid photoactive perovskite thin films.- highly favourable materials for efficient photovoltaic and optoelectronic applications. These images have significant implications for improving the performance of solar cell materials and have unlocked the next level of ability to understand these technologically important materials. The breakthrough was achieved by a joint team from the University of Oxford and Diamond who have just released a new paper published in Science.

Using the ePSIC (the Electron Physical Science Imaging Centre) E02 microscope and the ARM200 microscope in at the Department of Materials, University of Oxford, the team developed a new technique which allowed them to image the hybrid photoactive perovskites thin films with atomic resolution. This gave them unprecedented insights into their atomic makeup and provided them with information that is invisible to every other technique.

Read more on the Diamond website

Image: An example of one of the images obtained using the new protocol, which illustrates several of the phenomena that the team has been able to describe for the first time, including a range of grain boundaries, extended planar defects, stacking faults, and local inclusions of non-perovskite material.

Scientists probe Earth’s deep mantle in the laboratory

Extreme conditions experiments sharpen view of our planet’s interior

Simulating the conditions 2700 kilometres deep underground, scientists have studied an important transformation of the most abundant mineral on Earth, bridgmanite. The results from the Extreme Conditions Beamline at DESY’s X-ray light source PETRA III reveal how bridgmanite turns into a structure known as post-perovskite, a transformation that affects the dynamics of Earth’s lower mantle, including the spreading of seismic waves. The analysis can provide an explanation for a range of peculiar seismic observations, as the team headed by Sébastien Merkel from the Université de Lille in France report in the Journal Nature Communications.
Bridgmanite is a magnesian-iron mineral ((Mg,Fe)SiO3) with a crystal structure that is not stable under ambient conditions. It forms about 660 kilometres below the surface of the Earth, and microcrystalline grains found as inclusions in meteorites are the only samples ever recovered on the surface. “In order to study bridgmanite under the conditions of the lower mantle, we had to produce the mineral first,” explains Merkel. To do so, the scientists compressed tiny amounts of iron-magnesium-silicon-oxide in a diamond anvil cell (DAC), a device that can squeeze samples with high pressure between two small diamond anvils.

Image: The crystal structures of bridgmanite (left) and post-perovskite (right).

Credit: Université de Lille, Sébastien Merkel
>Read more on the PETRA III (DESY) website

Unleashing perovskites’ potential for solar cells

Perovskites — a broad category of compounds that share a certain crystal structure — have attracted a great deal of attention as potential new solar-cell materials because of their low cost, flexibility, and relatively easy manufacturing process. But much remains unknown about the details of their structure and the effects of substituting different metals or other elements within the material. Now, researchers using the U.S. Department of Energy’s (DOE’s) Advanced Photon Source (APS) have been able to decipher a key aspect of the behavior of perovskites made with different formulations: With certain additives there is a kind of “sweet spot” where sufficient amounts will enhance performance and beyond which further amounts begin to degrade it. The findings were detailed in the journal Science.
Conventional solar cells made of silicon must be processed at temperatures above 1,400 degrees Celsius, using expensive equipment that limits their potential for production scale-up. In contrast, perovskites can be processed in a liquid solution at temperatures as low as 100 degrees, using inexpensive equipment. What’s more, perovskites can be deposited on a variety of substrates, including flexible plastics, enabling a variety of new uses that would be impossible with thicker, stiffer silicon wafers.

>Read more on the Advanced Photon Source (APS) website

Image: Perovskite-based solar cells are flexible, lightweight, can be produced cheaply, and could someday bring down the cost of solar energy. Shown here is the type of perovskite solar cell measured at the CNM/XSD Hard X-ray Nanoprobe at the APS.
Credit: Rob Felt

Perovskites, the rising star for energy harvesting

Perovskites are promising candidates for photovoltaic cells, having reached an energy harvesting of more than 20% while it took silicon three decades to reach an equivalent. Scientists from all over the world are exploring these materials at the ESRF.

Photovoltaic (PV) panels exist in our society since several years now. The photovoltaic market is currently dominated by wafer-based photovoltaics or first generation PVs, namely the traditional crystalline silicon cells, which take a 90% of the market share.

Although silicon (Si) is an abundant material and the price of Si-PV has dropped in the past years, their manufacturing require costly facilities. In addition, their fabrication typically takes place in countries that rely on carbon-intensive forms of electricity generation (high carbon footprint).

But there is room for hope. There is a third generation of PV: those based on thin-film cells. These absorb light more efficiently and they currently take 10% of the market share.

>Read more on the European Synchrotron website

Image: The CEA-CNRS team on ID01. From left to right: Peter Reiss, from CEA-Grenoble/INAC, Tobias Schulli from ID01, Tao Zhou from ID01, Asma Aicha Medjahed, Stephanie Pouget (both from CEA-Grenoble/INAC) and David Djurado, from the CNRS. 
Credits: C. Argoud.

Spin and charge frozen by strain

In the development of next-generation microelectronics, a great deal of attention has been given to the use of epitaxy (the deposition of a crystalline overlayer on a crystalline substrate) to tailor the properties of materials to suit particular applications. Correlated electron systems provide an excellent platform for the development of new microelectronic devices due to the presence of multiple competing ground states of similar energy. In some cases, strain can drive these systems between two or more such states, resulting in phase transitions and dramatic changes in the properties of the material. Often, the specific mechanism by which strain accomplishes such a feat is unknown. This was precisely the case in lanthanum cobaltite, LaCoO3, which undergoes a strain-induced transition from paramagnet to ferromagnet, until a recent study carried out at the U.S. Department of Energy’s Advanced Photon Source (APS) revealed the intriguing microscopic phenomena at work in this system. These phenomena may play a role in spin-state and magnetic-phase transitions, regardless of stimulus, in many other correlated systems.

Lanthanum cobaltite is a perovskite, which means the structure can be thought of as made up of distorted cubes with cobalt at the cube centers, oxygen at the cube faces, and lanthanum at the cube corners. The cobalt ions have a nominal 3+ valence, meaning they lose three electrons to the neighboring oxygen ions. Bulk LaCoO3 is paramagnetic (that is, having a net magnetization only in the presence of an externally applied magnetic field) above 110 Kelvin, and non-magnetic below that temperature. In its ground state, all the electrons on a given cobalt ion are paired, meaning their magnetic spins cancel each other out. These are so-called low-spin (LS) Co3+ ions, and when all of the cobalt ions are in this form, LaCoO3 is non-magnetic.

>Read more on the Advanced Photon Source website

Image: Upper left: Resonant x-ray scattering at the cobalt K-edge. Inversion of the spectra at the reflections shown indicates the presence of charge order. Upper right: X-ray diffraction reciprocal space maps at the (002) and (003) reflection indicating the high epitaxial quality of the films. The satellite peaks result from lattice modulations associated with the reduced symmetry in the film. Lower left: Schematic crystal structure of epitaxial LaCoO3 showing the arrangement of cobalt sites with different charge and spin. The circulated charge transfer from oxygen to the different cobalt sites is also shown. Lower right: Calculated total energy as a function of the difference between the in-plane Co-O bond lengths of HS and LS cobalt ions (∆rCo-O).

Precise layer growth in a superlattice controls electron coupling and magnetism

Two-dimensional (2-D) crystalline films often exhibit interesting physical characteristics, such as unusual magnetic or electric properties. By layering together distinct crystalline thin films, a so-called “superlattice” is formed. Due to their close proximity, the distinct layers of a superlattice may significantly affect the properties of other layers. In this research, single 2-D layers of strontium iridium oxide were sandwiched between either one, two, or three layers of strontium titanium oxide to form three distinct superlattices. Researchers then used x-ray scattering at the U.S. Department of Energy’s Advanced Photon Source (APS) to probe the magnetic structure of each superlattice. The x-ray data revealed that the number of layers of the titanium-based material produced a dramatic difference in the magnetic behavior of the iridium-based layer. These findings are especially significant because the iridium compound is one of the perovskites, a class of materials known for their unique electric, magnetic, optical, and other properties that have proven useful in sensor and energy-related devices, and which are being intensively investigated for their application towards improved electronics and other technologies.

>Read more on the Advance Photon Source website
Image: Fig. 1. Illustration of superlattices. Panel (a) shows the Sr2IrO4 crystalline superlattice, with alternating layers of SrIrO3 and SrO. The SrIrO3 layers are perovskites, depicted as diamond-like shapes formed by six oxygen atoms; inside each diamond is a gold-colored iridium ion (cation), while pink strontium ions lay near the diamond’s ends. The SrIrO3 layers are separated by non-perovskite (inert) SrO layers, depicted as pink bars. Panel (b) shows the more-recently developed SrIrO3/SrTiO3 superlattice used for this research. Three distinct SrIrO3/SrTiO3 superlattices were created, having 1, 2, or 3 layers of inert SrTiO3 layers (colored green) separating the active SrIrO3 layers. Bold green boxes highlight the number of inert SrTiO3 layers in the three distinct lattices. While both SrIrO3 (gold diamonds) and SrTiO3 (green diamonds) are perovskites, the green-colored SrTiO3 layers buffer the active SrIrO3 layers. (The entire image is visible here)

An energy-resolution record for resonant inelastic x-ray scattering

Resonant inelastic x-ray scattering (RIXS) is a powerful technique for studying electronic excitations in a wide variety of new and complex materials, offering momentum- and energy-resolution and potentially even analysis of scattered polarization. Since its inception in the 1990s, the development of RIXS instrumentation and scientific subjects have benefited from a closely intertwined evolution; improvements in energy resolution and throughput, spurred by specific scientific cases, have in turn made new subjects of study feasible. In the continued quest for substantially improved energy resolution, a novel prototype RIXS flat-crystal spectrometer was recently tested at X-ray Science Division beamline 27-ID-B at the U.S. Department of Energy’s Advanced Photon Source (APS). The spectrometer established a new record resolution for RIXS below 10 meV, together with a promise to do even better soon.

Early RIXS work was aimed at the study of charge transfer excitations in transition metal oxides (TMO), including the high-Tc superconducting Cuprates, where electronic excitations could be observed at a few eV. As the understanding of strongly correlated electron systems progressed, orbital degrees of freedom came into focus: in many Mott insulators, transitions between the active d-orbitals, the “dd excitations”, were hot topics and could reliably be observed with the then state-of-the-art resolution of 100-200 meV. Magnetism and magnetic ordering are central questions in the study of correlated electron systems. For example, the layered perovskite Iridates showing strikingly similar magnetic exchange interactions as the Cuprates, implying that unconventional superconductivity might be found here, to the intriguing assertion that magnetic properties of honeycomb Iridates might point to a quantum spin liquid as ground state of this material, the spectrum of novel, exotic properties uncovered or anticipated promise a treasure trove of scientific discoveries. In the late 2000s, RIXS was established as a probe of magnetic excitations. However, spectral features associated with magnetic excitations (“magnons”) lie at a fraction of an eV or even in the sub-10meV regime. A significant advance in energy resolution is needed to attack such subjects with RIXS.

>Read more on the Advanced Photon Source website

Figure: Schematic rendering of the new flat-crystal RIXS spectrometer.

Scientists discover material ideal for smart photovoltaic windows

Berkeley Lab researchers make thermochromic windows with perovskite solar cell

Smart windows that are transparent when it’s dark or cool but automatically darken when the sun is too bright are increasingly popular energy-saving devices. But imagine that when the window is darkened, it simultaneously produces electricity. Such a material – a photovoltaic glass that is also reversibly thermochromic – is a green technology researchers have long worked toward, and now, scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated a way to make it work.

Researchers at Berkeley Lab, a Department of Energy (DOE) national lab, discovered that a form of perovskite, one of the hottest materials in solar research currently due to its high conversion efficiency, works surprisingly well as a stable and photoactive semiconductor material that can be reversibly switched between a transparent state and a non-transparent state, without degrading its electronic properties.

>Read more on the Advanced Light Source website

Image Credit: iStock

 

Perovskite solar cells: perfection not required!

Experiments at BESSY II reveal why even inhomogeneous perovskite films are highly functional

Metal-organic perovskite layers for solar cells are frequently fabricated using the spin coating technique. If you follow the simplest synthesis pathway and use industry-relevant compact substrates, the perovskite layers laid down by spin coating generally exhibit numerous holes, yet attain astonishingly high levels of efficiency. The reason that these holes do not lead to significant short circuits between the front and back contact and thus high-rate charge carrier recombination has now been discovered by a HZB team headed by Dr.-Ing. Marcus Bär in cooperation with the group headed by Prof. Henry Snaith (Oxford Univ.) at BESSY II.

>Read more on the HZB website.