Unexpected rise in ferroelectricity as material thins

SCIENTIFIC ACHIEVEMENT

Researchers working at the Advanced Light Source (ALS) showed that hafnium oxide surprisingly exhibits enhanced ferroelectricity (reversible electric polarization) as it gets thinner.

SIGNIFICANCE AND IMPACT

The work shifts the focus of ferroelectric studies from more complex, problematic compounds to a simpler class of materials and opens the door to novel ultrasmall, energy-efficient electronics.

Ferroelectric lower limit?

Distortions in the atomic geometries of certain materials can lead to ferroelectricity—the presence of electric dipoles (charge separations) with switchable polarizations. The ability to control this polarization with an external voltage offers great promise for ultralow-power microprocessors and nonvolatile memory.

As electronic devices become smaller, however, the materials used to store and manipulate electronic data are being pushed to low-dimensional extremes. Properties that function reliably in bulk materials often diminish in ultrathin films just a few atomic units thick. Therefore, exploring the critical thickness limit in “polar” materials (i.e., materials having spontaneous electric polarization) is not only a fundamental issue for nanoscale ferroelectric research, it also has extensive implications for the future of high-density ferroelectric-based electronics.

Read more on Advanced Light Source (ALS) website

Image : A thin layer of hafnium oxide (two unit-cell thicknesses, or about 1 nm) has an electric polarization that’s reversible by an external electric field, making it attractive for use in next-generation low-power microelectronics.

Credit: Ella Maru Studio