X-ray studies reveal details of how P. juliflora shrub roots scavenge and immobilize arsenic from toxic mine tailings.
Working in collaboration with scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and SLAC National Accelerator Laboratory, researchers at the University of Arizona have identified details of how certain plants scavenge and accumulate pollutants in contaminated soil. Their work revealed that plant roots effectively “lock up” toxic arsenic found loose in mine tailings—piles of crushed rock, fluid, and soil left behind after the extraction of minerals and metals. The research shows that this strategy of using plants to stabilize pollutants, called phytostabilization, could even be used in arid areas where plants require more watering, because the plant root activity alters the pollutants to forms that are unlikely to leach into groundwater.
The Arizona based researchers were particularly concerned with exploring phytostabilization strategies for mining regions in the southwestern U.S., where tailings can contain high levels of arsenic, a contaminant that has toxic effects on humans and animals. In the arid environment with low levels of vegetation, wind and water erosion can carry arsenic and other metal pollutants to neighboring communities.
>Read more on the National Synchrotron Light Source II (NSLS-II) website
Image: Scientists from the University of Arizona collect plant samples from the mine tailings at the Iron King Mine and Humboldt Smelter Superfund site in central Arizona. X-ray studies at Brookhaven Lab helped reveal how these plants’ roots lock up toxic forms of arsenic in the soil.
Credit: Jon Chorover