Study reveals mechanism in spruce tree that causes growth

While it’s common knowledge that trees grow when days start to become longer in the springtime and stop growing when days become shorter in the fall, exactly how this happens has not been well understood.

Now, scientists using the Canadian Light Source are offering insights into the mechanisms of how certain cells in the winter buds of Norway spruce respond to changes in seasonal light, affecting growth. The research was published in Frontiers in Plant Science.

Such knowledge allows for better predictions of how trees might respond to climate change, which could bring freezing temperatures while daylight is still long or warmer temperatures when daylight is short.

Professor Jorunn E. Olsen and YeonKyeong Lee, plant scientists at the Norwegian University of Life Sciences, along with colleagues from the University of Saskatchewan investigated winter bud cells from Norway spruce and how they differ with respect to the amount of daylight to which they were exposed.

>Read more on the Candian Light Source website

Image (from left to right, extract): plant with terminal winter bud after short day exposure for three weeks; plant with brown bud scales after short day exposure for eight weeks; plant showing bud break and new growth three weeks after re-transfer to long days following eight weeks under short days. Entire picture here.

New Catalyst Gives Artificial Photosynthesis a Big Boost

Inspired by plants: Inorganic catalyst converts electrical energy to chemical energy at 64% efficiency

Researchers have created a new catalyst that brings them one step closer to artificial photosynthesis — a system that would use renewable energy to convert carbon dioxide (CO2) into stored chemical energy.

As in plants, their system consists of two linked chemical reactions: one that splits water (H2O) into protons and oxygen gas, and another that converts CO2 into carbon monoxide (CO). The CO can then be converted into hydrocarbon fuels through an established industrial process. The system would allow both the capture of carbon emissions and the storage of energy from solar or wind power.

Yufeng Liang and David Prendergast – scientists at the Molecular Foundry, a nanoscale research facility at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) – performed theoretical modeling work used to interpret X-ray spectroscopy measurements made in the study, published Nov. 20 in Nature Chemistry. This work was done in support of a project originally proposed by the University of Toronto team to the Molecular Foundry, a DOE Office of Science User Facility.

 

>Read more on the ALS website

Image: Phil De Luna of University of Toronto is one of the lead authors of a new study that reports a low-cost, highly efficient catalyst for chemical conversion of water into oxygen. The catalyst is part of an artificial photosynthesis system in development at the University of Toronto.
Credit: Tyler Irving/University of Toronto

Research on soil acidity could lead to new wheat varieties

Food production will need to double by the time Earth’s population grows to nine billion people by 2050.

This is a challenge that motivates scientists the world over and Australian crop scientist and plant nutritionist Peter Kopittke is no exception.

The young scientist spent a few days this past summer in the heart of Canada’s wheat belt working on the problem of aluminum toxicity in acidic soil. It’s a problem that affects wheat growers in many parts of the world although not in Saskatchewan, home to the CLS, where Kopittke spent an intense 36 hours earlier this year.

Globally, it is estimated that acid soils result in more than US$129 billion in lost production annually. In Western Australia, farmers lose A$1.5 billion annually because the aluminum in the soil destroys the root system, killing the plant.

Kopittke, associate professor in soil and environmental sciences at The University of Queensland, explains that few Saskatchewan wheat farmers will have ever heard of the aluminum toxicity problem as arable land in Saskatchewan is mostly alkaline, a pH condition that does result in any uptake of the element in plant roots. But Kopittke points out that 30 to 40 per cent of all the arable land in the world is acidic and aluminum is the third most common element in the world.

>Read more on the Canadian Light Source website

Image: Wheat seedlings grown in soils containing increasing levels of soluble aluminum. Roots at high aluminum are stunted with few branches.
Image courtesy of Steve Carr, Aglime Australia.

 

World Polio Day

Are we nearing the end of the war on polio?

There was a time when the word itself was enough to strike fear into the hearts of people around the world. Polio: a highly infectious virus that could shatter young lives in the blink of an eye. On the 24th of October, we mark World Polio Day, and this is something worth celebrating. Because whilst the story isn’t over yet, it may well be nearing its end.

Polio has been around since before records began, but it wasn’t until the early-twentieth century that epidemics began to sweep through communities in Europe and America, affecting many thousands of children and families.

It’s hard to underestimate the terror once caused by polio. At its height in the 1950s, parents routinely lived in fear of their children becoming quarantined, paralysed or even worse. It was a dark time in medical history but, despite this, polio really is a success story for modern science.

Researchers explore ways to remove antibiotics polluting lakes and rivers

Pre-treated barley straw is showing promise as an environmentally-friendly material.

Pre-treated barley straw could be used to help soak up certain types of antibiotics polluting waterways. Pharmaceuticals, including antibiotics, are an increasingly common pollutant in water systems, says Catherine Hui Niu, associate professor in the Department of Chemical and Biological Engineering at the University of Saskatchewan.

After pharmaceuticals are used in humans and animals, traces are excreted and end up in sewage and, from there, into the environment. Their presence in waterways has raised concerns about potential risks to human health and ecosystems. To date there has been no effective way to remove them from water sources.

There are some materials that attract pharmaceutical pollutants to them in a process called adsorption, and could hypothetically be used to help remove them from water, says Niu. But their adsorption capacities need to be enhanced to make them useful for large scale clean-up efforts.

Solar hydrogen production by artificial leafs

Scientists analysed how a special treatment improves cheap metal oxide photoelectrodes

Metal oxides are promising candidates for cheap and stable photoelectrodes for solar water splitting, producing hydrogen with sunlight. Unfortunately, metal oxides are not highly efficient in this job. A known remedy is a treatment with heat and hydrogen. An international collaboration has now discovered why this treatment works so well, paving the way to more efficient and cheap devices for solar hydrogen production.

The fossil fuel age is bound to end, for several strong reasons. As an alternative to fossil fuels, hydrogen seems very attractive. The gas has a huge energy density, it can be stored or processed further, e. g. to methane, or directly provide clean electricity via a fuel cell. If it is produced using sunlight alone, hydrogen is completely renewable with zero carbon emissions.

>Read More

Growing a better polio vaccine

Researchers use plants as factories to produce a safer polio vaccine

Successful vaccination campaigns have reduced the number of polio cases by over 99% in the last several decades. However, producing the vaccines entails maintaining a large stock of poliovirus, raising the risk that the disease may accidentally be reintroduced.
Outbreaks can also occur due to mutation of the weakened poliovirus used in the oral vaccine. In addition, the oral vaccine has to be stored at cold temperatures. To address these shortcomings, an international team of researchers across the UK has engineered plants that produce virus-like particles derived from poliovirus, which can serve as a vaccine.
They report the success of this approach in a paper appearing in Nature Communications. The team confirmed the structure of the virus-like particles by cryo-electron microscopy at Diamond Light Source’s Electron Bio-Imaging Centre (eBIC) and showed that the particles effectively protected mice from infection with poliovirus. This proof-of-principle study demonstrates that a safe, effective polio vaccine can be produced in plants and raises the possibility of using the same approach to tackle other viruses.