X-ray fluorescence sheds light on the growth patterns of extinct hyaena

A novel synchrotron technique examines growth patterns in fossil bones

Until recently, it was thought that warm-blooded animals experienced uninterrupted high rates of growth, whilst cold-blooded animals showed zonal growth – alternating periods of fast and slow growth. The identification of zonal growth in a range of mammals and birds disproved that theory, but as yet we don’t know how widespread zonal growth is in vertebrates, or which factors affect the speed of bone growth. Conventional techniques lack the resolution to correlate variations in bone chemistry with histological features, but in work recently published in the Journal of Analytical Atomic Spectrometry, an international team of researchers carried out the first direct comparison between optical histology (bone tissue identification) and synchrotron-based chemical mapping, quantification, and characterisation of trace elements (biochemistry) within cyclic growth tissues, and reported the first case of zonal tissue within the Hyaenidae.

>Read more on the Diamond Light Source website

Image: Lead author Jennifer Anné with a spotted hyaena mount.

Mapping terrestrial analogs for martian samples

Internships at Brookhaven’s National Synchrotron Light Source II helped turn her love for rocks into serious study.

Catherine Trewhella, a recent graduate from the University of Massachusetts, Amherst, and current intern at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, is taking a microscopic look at rocks at the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science user facility. Her research will help prepare scientists for analyzing samples brought back from outer space, specifically Mars.
Trewhella is currently interning as a part of Brookhaven Lab’s Office of Educational Programs’ Supplemental Undergraduate Research Program (SURP). Over the course of the fall, she has been using NSLS-II’s Submicron Resolution X-ray Spectroscopy (SRX) beamline to map out the chemical make-up of terrestrial analogs for Martian samples.
“They’re terrestrial rocks,” she said. “But what makes them worth the closer look is researchers believe they’re similar to rock formations expected on Mars.” These x-ray fluorescence images (XRF) will therefore help scientists better understand what they are seeing when studying Martian samples.

>Read more on the National Synchrotron Light Source II (NSLS-II) website

Image: Catherine Trewhella at the Submicron Resolution X-ray Spectroscopy (SRX) beamline at the National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab.

Plant roots police toxic pollutants

X-ray studies reveal details of how P. juliflora shrub roots scavenge and immobilize arsenic from toxic mine tailings.

Working in collaboration with scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and SLAC National Accelerator Laboratory, researchers at the University of Arizona have identified details of how certain plants scavenge and accumulate pollutants in contaminated soil. Their work revealed that plant roots effectively “lock up” toxic arsenic found loose in mine tailings—piles of crushed rock, fluid, and soil left behind after the extraction of minerals and metals. The research shows that this strategy of using plants to stabilize pollutants, called phytostabilization, could even be used in arid areas where plants require more watering, because the plant root activity alters the pollutants to forms that are unlikely to leach into groundwater.

The Arizona based researchers were particularly concerned with exploring phytostabilization strategies for mining regions in the southwestern U.S., where tailings can contain high levels of arsenic, a contaminant that has toxic effects on humans and animals. In the arid environment with low levels of vegetation, wind and water erosion can carry arsenic and other metal pollutants to neighboring communities.

>Read more on the National Synchrotron Light Source II (NSLS-II) website

Image: Scientists from the University of Arizona collect plant samples from the mine tailings at the Iron King Mine and Humboldt Smelter Superfund site in central Arizona. X-ray studies at Brookhaven Lab helped reveal how these plants’ roots lock up toxic forms of arsenic in the soil.
Credit: Jon Chorover

SESAME hosts its first users

Mid July, the first users arrived at SESAME to perform experiments using the Centre’s XAFS/XRF (X-ray absorption fine structure/X-ray fluorescence) spectroscopy beamline, SESAME’s first beamline to come into operation.

This was the Finnish Kirsi Lorentz and three of her colleagues at The Cyprus Institute: the Cypriot Grigoria Ioannou, the Japanese Yuko Miyauchi and the Greek/Egyptian Iosif Hafez, who together form a true international team in the spirit of SESAME.

Kirsi is the author of one of the 19 proposals from 5 of the SESAME Members (Cyprus, Egypt, Jordan, Pakistan and Turkey) that have been recommended for a total of 95.8 hour shifts on the XAFS/XRF beamline by SESAME’s Proposal Review Committee (PRC). The PRC is an international advisory body that evaluates the scientific and technological merit of proposals from the General Users and determines their priority using criteria based on IUPAP’s Recommendations for the Use of Major Physics Users Facilities.

“This heralds in a new stage in SESAME’s march forward, and for scientists in the SESAME Members and the region it is the tangible beginning of a moment from when it becomes possible to carry out state-of-the-art research in the region” said Khaled Toukan, Director of SESAME.

 “It is a unique opportunity and a real honour to be the first user of a synchrotron light facility – a research visit to remember” said Kirsi, who is examining ancient human remains from the Eastern Mediterranean and the Near East, adding “we are very excited with the results we obtained at the SESAME XAFS/XRF beamline, and grateful to all those who have worked so hard to bring this crucial research facility into operation in our region”.

>Read more on the SESAME website

Picture: Kirsi Lorentz, The Cyprus Institute: Kirsi Lorentz and her research team (from left to right: Yuko Miyauchi, Grigoria Ioannou, Kirsi Lorentz and Iosif Hafez) at the XAFS/XRF beamline control hutch.

Hidden medical text read for the first time in a thousand years

With X-ray imaging at SLAC’s synchrotron, scientists uncovered a 6th century translation of a book by the Greek-Roman doctor Galen.

An influential physician and a philosopher of early Western medicine, Galen of Pergamon was the doctor of emperors and gladiators. One of his many works, “On the Mixtures and Powers of Simple Drugs,” was an important pharmaceutical text that would help educate fellow Greek-Roman doctors.

The text was translated during the 6th century into Syriac, a language that served as a bridge between Greek and Arabic and helped spread Galen’s ideas into the ancient Islamic world. But despite the physician’s fame, the most complete surviving version of the translated manuscript was erased and written over with hymns in the 11th century – a common practice at the time. These written-over documents are known as palimpsests.

An international team of researchers is getting a clear look at the hidden text of the Syriac Galen Palimpsest with an X-ray study at the Stanford Synchrotron Radiation Lightsource (SSRL) at the Department of Energy’s SLAC National Accelerator Laboratory.

>Read more on the Stanford Synchrotron Radiation Lightsource website

Image: Conservators at Stanford University Libraries removed the pages from the leather-bound cover of the book of hymns, and mounted each leaf in an individually fitted, archival mat. The individual mats were placed in an aluminum frame to secure the pages while examining the underlying text with X-rays at the Stanford Synchrotron Radiation Lightsource.
Credit:
Farrin Abbott / SLAC National Accelerator Laboratory