Structure-guided nanobodies block SARS-CoV-2 infection

Monoclonal antibodies are valuable weapons in the battle against COVID-19 as direct-acting antiviral agents (1). Central to virus replication cycle, the SARS-CoV-2 spike protein binds the host cell receptor and engages in virus-host membrane fusion (2). Conformational flexibility of the spike protein allows each of its receptor binding domains (RBDs) to exist in two major configurations: a “down” conformation that is thought to be less accessible to binding of many neutralizing antibodies and an “up” conformation that binds both the receptor and neutralizing antibodies (3-5). Some neutralizing antibodies bind to the RBD in the “up” conformation and compete with the receptor (6, 7), while some neutralizing antibodies bind and stabilize the “down” confor­mation to prevent the conforma­tional changes required for viral entry, thereby hindering infection (8, 9).

Unfortunately, antibody molecules can be more difficult to produce in large quantities and are relatively costly to produce. Single domain antibodies, also known as nanobod­ies, offer an opportunity to rapidly produce antiviral agents for immun­ization and for therapy. Nanobodies are easier to produce, have high thermal stability and have the potential to be administered by inha­lation.

Read more on the SLAC website

Image: Bivalent nanobodies inducing post-fusion conformation of the SARS-CoV-2 spike protein: SARS-CoV-2 spike proteins are in a fusion inactive configuration when the RBDs are in the down conformation (left). Binding of bivalent nanobody (red and green ribbons joined by yellow tether) stabilizes the spike in an active conformation with all RBDs up (middle), triggering premature induction of the post-fusion conformation, which irreversibly inactivates the spike protein (right).

Lightsource research on SARS-CoV-2

Coronaviruses are a family which includes the common cold, SARS, MERS and the current outbreak of the disease COVID-19, caused by the SARS-CoV-2 virus.
Several facilities of our collaboration have started research about SARS-CoV-2 virus or launched open calls for rapid access. This post will be updated regularly.

Publications on SARS-CoV-2 Rapid Access


The Canadian Light Source (Canada) has created a specific page highlighting their COVID-19 research: COVID-19 research at the Canadian Light Source

BESSY II at HZB (Germany) has set up a page where it shows their contributions to the research on SARS-CoV-2 , see here

DESY (Germany) has launched a new page dedicated to Corona Research:

Diamond Light Source (UK) has created a specific website “Coronavirus Science” with platforms for various audiences: scientific community, general public and the media:

ELETTRA (Italy) has launched a new page dedicated to COVID-19 research:

The Photon Division of PSI (Switzerland) have collated many information linked to their institute on coronavirus-relevant research (recent publications, rapid access…):

ALBA (Spain) has set up a dedicated area on their website for information related to COVID-19 (rapid access, publications etc):

The ALS (CA/USA) has created a page listing all COVID-19 related research:

Published articles

2021.05.11 Swiss Light Source at PSI (Switzerland) article on their website: How remdesivir works against the coronavirus

2021.05.28 SLAC (CA / USA) article from the Stanford Synchrotron Radiation Lightsource (SSRL): Structure-guided Nanobodies Block SARS-CoV-2 Infection | Stanford Synchrotron Radiation Lightsource

2021.05.21 ALS (USA) article on their website: Guiding Target Selection for COVID-19 Antibody Therapeutics

2021.05.21 ESRF (France) article on their website: Combatting COVID-19 with crystallography and cryo-EM (

2021.05.18 ALS (USA) article on their website: How X-Rays Could Make Reliable, Rapid COVID-19 Tests a Reality | Berkeley Lab (

2021.04.27 Canadian Light Source (Canada), video on their website Investigating the long-term health impacts of COVID-19 (

2021.04.22 Synchrotron Light Research Institute (Thailand), article on their website: SLRI Presented Innovations Against COVID-19 Outbreak to MHESI Minister on His Visit to a Field Hospital at SUT

2021.04.16 Diamond Light Source (UK) article on their website: Massive fragment screen points way to new SARS-CoV-2 inhibitors

2021.04.14 SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL):Researchers search for clues to COVID-19 treatment with help from synchrotron X-rays

2021.04.07 Diamond Light Source (UK), article on their website: First images of cells exposed to COVID-19 vaccine – – Diamond Light Source

2021.04.05 ALS (CA/USA) blog post on Berkeley Lab Biosciences website: New COVID-19 Antibody Supersite Discovered

2021.04.02 PETRA III at DESY (Germany), article and animation on their website DESY X-ray lightsource identifies promising candidate for COVID drugs

2021.03.26 Diamond Light Source (UK), article on their website: New targets for antibodies in the fight against SARS-CoV-2

2021.02.23 Australian Light Source (ANSTO) Australia, article on their website: Progress on understanding what makes COVID-19 more infectious than SARS

2020.12.02 ESRF (France), article and video on their website: ESRF and UCL scientists awarded Chan Zuckerberg Initiative grant for human organ imaging project

2020.11.10 Diamond Light Source (UK), article and video on their website: From nought to sixty in six months… the unmasking of the virus behind COVID-19

2020.10.29 Canadian Light Source (Canada) video on their website: Studying how to damage the COVID-19 virus

2020.10.07 National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA) article on their website: Steady Progress in the Battle Against COVID-19

2020.10.07 Diamond Light Source (UK), article on their website: Structural Biology identifies new information to accelerate structure-based drug design against COVID-19

2020.10.06 MAX IV (Sweden), article on their website: Tackling SARS CoV-2 viral genome replication machinery using X-rays

2020.08.31 SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL): SARS-CoV-2 Spike Protein Targeted for Vaccine

2020.08.27 Diamond Light Source (UK), article on their website: Structural Biology reveals new target to neutralise COVID-19

2020.08.27 Canadian Light Source (Canada) video on their website: Developing more effective drugs

2020.08.25 Australian Synchrotron (ANSTO) (Australia) article on their website: More progress on understanding COVID-19

2020.08.24 DESY (Germany) article on their website: PETRA III provides new insights into COVID-19 lung tissue

2020.08.11 Australian Synchrotron (ANSTO) (Australia) article on their website: Unique immune system of the alpaca being used in COVID-19 research

2020.07.30 Swiss Light Source at PSI (Switzerland) article on their website: COVID-19 research: Anti-viral strategy with double effect

2020.07.29 National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA) article on their website: Ready to join the fight against COVID-19.

2020.07.20 ALBA (Spain) article on their website: A research team from Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC) uses synchrotron light to study the possible effect of an antitumoral drug of clinical use over the viral cycle of SARS-CoV-2 coronavirus. 

2020.07.15 ALS (USA) article on their website: Antibody from SARS Survivor Neutralizes SARS-CoV-2

2020.07.14 Diamond Light Source (UK), article on their website: Engineered llama antibodies neutralise Covid-19 virus

2020.06.17 European XFEL (Germany) article on their website: Pulling Together: A collaborative research approach to study COVID-19

2020.06.15 European XFEL (Germany) article on their website: Open Science COVID19 analysis platform online

2020.06.09 APS at Argonne National Laboratory (USA) article on their website: Novel Coronavirus Research at the Advanced Photon Source

2020.05. Società Italiana di Fisica publishes an article about research done at Elettra Sincrotrone Trieste (Italy) and the Advanced Light Source (CA / USA): Accelerator facilities support COVID-19-related research

2020.05.27 Diamond Light Source (UK), new animation video demonstrating the work that has been done at Diamond’s XChem facilities.

2020.05.19 Advanced Light Source (CA / USA), article about their latest results: X-ray Experiments Zero in on COVID-19 Antibodies

2020.05.15 Swiss Light Source (Switzerland), article about their first MX results: First MX results of the priority COVID-19 call

2020.05.14 MAX VI (Sweden), article about their research: Tackling SARS CoV-2 viral genome replication machinery using X-rays

2020.05.14 CHESS (NY/USA), article: CHESS to restart in June for COVID-19 research

2020.05.14 the LEAPS initiative brings together many of our European members. The initative published this brochure: Research at LEAPS facilities fighting COVID-19

2020.05.12 Diamond Light Source (UK), article about their collaboration in a consortium: UK consortium launches COVID-19 Protein Portal to provide essential reagents for SARS-CoV-2 research

2020.05.11 Advanced Photon Source (IL/USA), article: Studying Elements from the SARS-CoV-2 Virus at the Bio-CAT Beamline

2020.05.07 European XFEL (Germany), article: European XFEL open for COVID-19 related research

2020.05.06 ESRF (France), article: World X-ray science facilities are contributing to overcoming COVID-19

2020.04.29. BESSY II at HZB (Germany), article: Corona research: Consortium of Berlin research and industry seeks active ingredients

2020.04.29. Swiss Light Source and SwissFEL at PSI (Switzerland), interview series on the PSI website: Research on Covid-19

2020.04.23. PETRA III at DESY (Germany), article: X-ray screening identifies potential candidates for corona drugs

2020.04.21. MAX IV (Sweden), article: BioMAX switches to remote operations in times of COVID-19

2020.04.16. SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL): SLAC joins the global fight against COVID-19

2020.04.15 Berkeley National Lab (CA/ USA), article with a focus on the research at the Advanced Light Source (ALS):
Staff at Berkeley Lab’s X-Ray Facility Mobilize to Support COVID-19-Related Research

2020.04.07 Diamond Light Source (UK), article: Call for Chemists to contribute to the fight against COVID-19
Crowdfunding: COVID-19 Moonshot

2020.04.07. ANSTO’s Australian Synchrotron (Victoria), article: Aiding the global research effort on COVID-19

2020.04.06. National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA), article: Brookhaven Lab Mobilizes Resources in Fight Against COVID-19

2020.04.02. BESSY II at HZB (Germany), article: Corona research: Two days of measuring operation to find the right key

2020.03.31 Diamond Light Source (UK), article: Jointly with Exscientia and Scripps Research, Diamond aims to accelerate the search for drugs to treat COVID-19

2020.03.27 Argonne National Laboratory with the Advanced Photon Source (APS) and other facilities on-site (IL / USA), article: Argonne’s researchers and facilities playing a key role in the fight against COVID-19

2020.03.27 ANSTO’s Australian Synchrotron (Victoria), article and video: Helping in the fight against COVID-19

2020.03.25 PETRA III at DESY (Germany), article: Research team will X-ray coronavirus proteins

2020.03.23 Diamond Light Source (UK) releases its first animation explaining: SARS-CoV-2 Mpro Single Crystal Crystallography

2020.03.25 CERN Courrier (Switzerland) article about synchrotron research on SARS-CoV-2, written by Tessa Charles (accelerator physicist at the University of Melbourne currently based at CERN, completed her PhD at the Australian Synchrotron): Synchrotrons on the coronavirus frontline

2020.03.19 BESSY II at Helmholtz-Zentrum Berlin (Germany), research publication: Coronavirus SARS-CoV2: BESSY II data accelerate drug development

2020.03.19 BESSY II at Helmholtz-Zentrum Berlin (Germany), technique explanation webpage: Protein crystallography at BESSY II: A mighty tool for the search of anti-viral agents

2020.03.16 Diamond Light Source (UK), article on their “Coronavirus Science” website: Main protease structure and XChem fragment screen

2020.03.12. Elettra Sincrotrone (Italy), article on their website: New project to fight the spread of Coronavirus has been approved

2020.03.05. Advanced Photon Source (IL / USA), article on their website: APS Coronavirus Research in the Media Spotlight

2020.03.05. Advanced Photon Source (IL / USA), research publication: “Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2,” bioRXiv preprint  DOI: 10.1101/2020.03.02.968388, Article on their website (source: Northwestern University): New Coronavirus Protein Reveals Drug Target

Rapid access

Scientists can apply for rapid access at following facilities (only member facilities of are referenced, the most recent published (or updated) call is mentioned first).

  • The National Synchrotron Light Source II (NSLS-II) in NY / USA is offering a streamlined and expedited rapid access proposal process for groups that require beam time for structural biology projects directly related to COVID-19. The Center for Biomolecular Structure team is supporting remote macromolecular crystallography experiments at Beamlines 17-ID-1 (AMX) and 17-ID-2 (FMX) in this research area. To submit a macromolecular crystallography proposal for COVID-19 related research, use the following form:
  • The Advanced Photon Source (APS) at Argonne National Laboratory in IL / USA  user program is operational to support:

·         Research on SARS-CoV-2 or other COVID-19-related research that addresses the current pandemic.

·         Critical, proprietary pharmaceutical research.

·         Mail-in/remote access work for any research involving low-risk samples and most medium-risk samples (as defined on the APS ESAF form).

·         Limited in situ research (set-up with one person, and ability to carry out majority of experiment safely remotely)

PETRA III at DESY in Germany offers also Fast Track Access for Corona-related research:

Australian Synchrotron at ANSTO makes its macromolecular crystallography beamlines available to structural biologists in response to the COVID-19 pandemic:

North American DOE lightsource facilities have created a platform to enable COVID-19 research. There you can find ressources and points of contact to request priority access:
Structural Biology Resources at DOE Light Sources

Elettra Sincrotrone Trieste in Italy opens to remote acces following beamlines: XRD1, XRD2, SISSI-BIO and MCX thanks to an CERIC-ERIC initiative:

The Advanced Light Source (ALS) at LBNL in California / USA has capabilities relevant to COVID-19 and researchers can apply through their RAPIDD mechanism:

ALBA Synchrotron in Spain offers a COVID-19 RAPID ACCESS on all beamlines:

SOLARIS Synchrotron in Poland gives acces to its Cryo Electron Microscope thanks to an CERIC-ERIC initiative:

Swiss Light Source and Swiss FEL at PSI in Switzerland offer priority access to combating COVID-19:

Diamond Light Source in the United Kingdom opened also a call for rapid access:

Image: Electron density at the active site of the SARS-CoV-2 protease, revealing a fragment bound
Credit: Diamond Light Source

Combatting COVID-19 with crystallography and cryo-EM

Crystallography and cryo-electron microscopy are vital tools in the fight against COVID-19, allowing researchers to reveal the molecular structures and functions of the SARS-CoV-2 virus, paving the way for new drugs and vaccines. Since the start of the pandemic, the ESRF has mobilised its crystallography and cryo-electron microscopy expertise and made its new Extremely Brilliant Source available as part of the collective effort to address this critical global health challenge.

When the WHO declared the outbreak of COVID-19 a public health emergency of international concern in early 2020, it signalled the start of a race against time for scientists to understand how the newly identified SARS-CoV-2 virus functioned and to develop treatments for the disease. Structural biologists around the world pitched in, determining the structures of most of the 28 proteins encoded by the novel coronavirus. This remarkable collective effort resulted in over a thousand 3D structural models of SARS-CoV-1 and SARS-CoV-2 proteins deposited in the Protein Data Bank (PDB) public archive in just one year [1]. Researchers and drug developers rely on these models to design antiviral drugs, therapies and vaccines. However, the speed and urgency with which the SARS-CoV-2 protein structures were solved means that errors could inevitably slip in, with potentially severe consequences for drug designers targeting certain parts of the virus’s structure. 

Enter the Coronavirus Structural Task Force, an international team of 25 structural biologists offering their time and expertise to fix errors in structural models of the virus’s proteins in order to give drug designers the best possible templates to work from. Gianluca Santoni, crystallography data scientist in the ESRF’s structural biology group, is part of the task force, whose work is detailed in an article recently published in Nature Structural & Molecular Biology [2]. “Every week, we check the PDB for any new protein structure related to SARS-CoV-2,” he explains. “We push structural biology tools and methods to the limit to get every last bit of information from the data, to evaluate the quality and improve the models where possible.” 

To read more visit the ESRF website

Image: The coronavirus research project ‘COVNSP3’ is based on the use of the ESRF’s cryo-electron microscope facility, led by Eaazhisai Kandiah (pictured)

Credit: ESRF/S. Cande.

Beaming in on Coronavirus details

User operation resumed at European XFEL end of March, and the first experiments to receive beamtime are those being carried out at the Single Particles, Clusters, and Biomolecules & Serial Femtosecond Crystallography (SPB/SFX) instrument. They will focus on getting deeper insights into the Coronavirus, and, if successful, can lead to a better understanding of the structure of key Coronavirus proteins. New information about the shapes of these proteins, which the virus needs to copy itself, will aid scientists in their quest to find ways to fight COVID.

“Three user collaborations have proposed experiments that will use two distinct approaches to study the Coronavirus. Two collaborations lead by scientists from DESY and Diamond Light Source will look at the structure and binding of ligands to the proteases of the Coronavirus,” says Adrian Mancuso, leading scientist at the SPB/SFX instrument. A ligand is a molecule that binds another specific molecule or atom. Some ligands deliver a signal during the binding process and can be thought of as signaling molecules, which interact with proteins in target cells called receptors. At the European XFEL, scientists can potentially observe the process of these ligands attaching to proteins at atomic resolution, however, first an ordered crystal of the relevant protein is required. “XFELs are uniquely positioned to watch how irreversible processes in proteins—such as binding of potential drug candidates—happen,” explains Mancuso.

Read more on the European XFEL website

Image: A shot from the control hutch showing one of the first COVID-related beamtimes at SPB/SFX

Credit: European XFEL

Massive fragment screen points way to new SARS-CoV-2 inhibitors

Experiment with 2533 fragments compounds generates chemical map to future antiviral agents 

New research published in Science Advances provides a template for how to develop directly-acting antivirals with novel modes of action, that would combat COVID-19 by suppressing the SARS-CoV-2 viral infection. The study focused on the macrodomain part of the Nsp3 gene product that SARS-CoV-2 uses to suppress the host cell’s natural antiviral response. This part of the virus’s machinery, also known as Mac1, is essential for its reproduction: previous studies have shown that viruses that lack it cannot replicate in human cells, suggesting that blocking it with a drug would have the same effect.  

The study involved a crystallographic fragment screen of the Nsp3 Mac1 protein by an open science collaboration between researchers from the University of Oxford, the XChem platform at Diamond, and researchers from the QCRG Structural Biology Consortium at the University of California San Francisco.  The international effort discovered 234 fragment compounds that directly bind to sites of interest on the surface of the protein, and map out chemical motifs and protein-compound interactions that researchers and pharmaceutical companies can draw on to design compounds that could be developed into antiviral drugs.  This work is thus foundational for preparing for future pandemics.   

Read more on the Diamond website

Image: Principal Beamline Scientist on I04-1, Frank von Delft

Credit: Diamond Light Source

Researchers search for clues to COVID-19 treatment

Two groups of researchers drew on SLAC tools to better understand how to target a key part of the virus that causes COVID-19

Vaccination, masks and physical distancing help limit the spread of COVID-19 – but, researchers say, the disease is still going to infect people, and doctors are still going to need better medicines to treat patients. This may be especially true for cancer patients and other at-risk people who may lack a sufficiently strong immune system to benefit from the vaccine. 

Now, two teams working in part at the Department of Energy’s SLAC National Accelerator Laboratory have found some clues that could, down the road, lead to new COVID drugs. 

The researchers, from John Tainer’s lab at MD Anderson Cancer Center and James Fraser’s group at the University of California, San Francisco, focused on a molecular structure that is common to all coronaviruses but has proven especially troublesome in the case of the virus that causes COVID-19. The structure contributes both to the virus’s ability to replicate and to immune system overreactions that have proven particularly deadly.

The trouble, Fraser said, is that scientists don’t know what kinds of molecules would bind to the structure, known as the Nsp3 macrodomain, let alone how to combine such molecules to interfere with its deadly work. 

To remedy that problem, Fraser’s group screened several thousand molecules at facilities including SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) to see where and how well the molecules bound to crystallized forms of Nsp3. The team combined those results with computer models to understand how the molecules might affect the structure of the macrodomain and whether they might help inhibit its function. 

Read more on the SLAC website

Promising candidates identified for COVID drugs

A team of researchers has identified several candidates for drugs against the coronavirus SARS-CoV-2 at DESY´s high-brilliance X-ray lightsource PETRA III. They bind to an important protein of the virus and could thus be the basis for a drug against Covid-19.

In a so-called X-ray screening, the researchers, under the leadership of DESY, tested almost 6000 known active substances that already exist for the treatment of other diseases in a short amount of time. After measuring about 7000 samples, the team was able to identify a total of 37 substances that bind to the main protease (Mpro) of the SARS-CoV-2 virus, as the scientists report online today in the journal Science. Seven of these substances inhibit the activity of the protein and thus slow down the multiplication of the virus. Two of them do this so promisingly that they are currently under further investigation in preclinical studies. This drug screening – probably the largest of its kind – also revealed a new binding site on the main protease of the virus to which drugs can couple.

Read more on the DESY website

Image: In the control hutch of the PETRA III beamline P11, DESY researcher Wiebke Ewert shows on a so-called electron density map where a drug candidate (green) binds to the main protease of the corona virus (blue).

Credit: DESY, Christian Schmid

New targets for antibodies in the fight against SARS-CoV-2

An international team of researchers examined the antibodies from a large cohort of COVID-19 patients. Due to the way antibodies are made, each person that is infected has the potential to produce many antibodies that target the virus in a slightly different way. Furthermore, different people produce a different set of antibodies, so that if we were to analyse the antibodies from many different patients, we would potentially be able to find many different ways to neutralise the virus.

The research article in the journal Cell is one of the most comprehensive studies of its kind so far. It is available online now and will be published in print on 15 April. These new results now show that there are many different opportunities to attack the virus using different antibodies over a much larger area than initially thought/mapped.

Professor Sir Dave Stuart, Life Sciences Director at Diamond and Joint head of Structural Biology at the University of Oxford, said:

SARS CoV-2 is the virus that causes COVID-19. Once infected with this virus, the human immune system begins to fight the virus by producing antibodies. The main target for these antibodies is the spike protein that protrudes from the virus’ spherical surface. The spike is the portion of the virus that interacts with receptors on human cells. This means that if it becomes obstructed by antibodies, then it is less likely that the virus can interact with human cells and cause infection.

By using Diamond Light Source, applying X-ray crystallography and cryo-EM, we were able to visualise and understand antibodies interact with and neutralize the virus. The study narrowed down the 377 antibodies that recognize the spike to focus mainly on 80 of them that bound to the receptor binding domain of the virus, which is where the virus spike docks with human cells.

Read more on the Diamond website

Image: Figure from the publication showing how the receptor binding domain resembles a human torso.

Credit: The authors (Cell DOI: 10.1016/j.cell.2021.02.032)

World Science Day spotlight: Collaborating to tackle SARS-CoV-2

Science facilities worldwide have been working around the clock to drive forward SARS-CoV-2 research to alleviate the suffering that the COVID-19 pandemic is currently causing.

Today (November 10), in recognition of World Science Day for Peace and Development, the collective efforts of thousands of scientists and technical experts is being marked through this year’s focus – “Science for and with Society in dealing with the global pandemic.”

At the start of the pandemic, the facilities that make up the collaboration were swift to ensure that rapid access was available for researchers working on SARS-CoV-2. This has led to a large body of research being undertaken at synchrotrons and free electron lasers.  The aims have been varied and include mapping the structure of the virus; finding binding sites for drugs to lock into; screening existing drugs to establish if they have a role to play in treating patients; understanding the impact of the virus on the lungs; and understanding the immune response so vaccines can be designed to illicit an immune response in the body.

A dedicated, regularly updated, web page – Lightsource research for SARS-CoV-2 – draws together all this research, along with other publications and resources.  It also includes links for researchers wishing to gain rapid access for their SARS-CoV-2 experiments.

The World Science Day for Peace and Development was created as a follow-up to the World Conference on Science, organised jointly by UNESCO and the International Council for Science in Budapest (Hungary) in 1999.

By linking science more closely with society, World Science Day for Peace and Development aims to ensure that citizens are kept informed of developments in science. It also underscores the role scientists play in broadening our understanding of the remarkable, fragile planet we call home and in making our societies more sustainable.

Learn more about World Science Day for Peace and Development on the UNESCO website

Image: World Science Day for Peace and Development 2020 poster

Credit: UNESCO


The new Brazilian synchrotron light source, Sirius, from the Brazilian Synchrotron Light Laboratory (LNLS) at the Brazilian Center for Research in Energy and Materials (CNPEM), carried out the first experiments on one of its beamlines this week. The first research station to start operating, still in the commissioning stage, can reveal details of the structure of biological molecules, such as viral proteins. These first experiments are part of an effort by CNPEM to provide a cutting-edge tool to the Brazilian scientific community working in SARS-CoV-2 research.

In these initial analyses, CNPEM researchers observed crystals of a coronavirus protein, essential for the development of COVID-19. The first results reveal details of the structure of this protein, important for understanding the biology of the virus and supporting research that seeks new drugs against the disease.

>Read more on the LNLS website