APS helps Pfizer create Covid-19 antiviral treatment

Pharmaceutical company Pfizer has announced the results of clinical trials of its new oral antiviral treatment against COVID-19. The new drug candidate, Paxlovid, proved to be effective against the SARS-CoV-2 virus, which causes COVID-19, according to results released by Pfizer on Nov. 5.

Scientists at Pfizer created Paxlovid with the help of the ultrabright X-rays of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Argonne National Laboratory.

“Today’s news is a real game-changer in the global efforts to halt the devastation of this pandemic,” said Albert Bourla, chairman and chief executive officer of Pfizer, in a company press release. â€‹â€śThese data suggest that our oral antiviral candidate, if approved or authorized by regulatory authorities, has the potential to save patients’ lives, reduce the severity of COVID-19 infections and eliminate up to nine out of 10 hospitalizations.”

DOE invests in user facilities such as the APS for the benefit of the nation’s scientific community, and supports biological research as part of its energy mission. This research has been critical in the fight against COVID-19. The DOE national laboratories formed the National Virtual Biotechnology Laboratory (NVBL) consortium in 2020 to combat COVID-19 using capabilities developed for their DOE mission, and that consortium helps support research into antiviral treatments such as Paxlovid.

Work to determine the structure of the antiviral candidate was done at the Industrial Macromolecular Crystallography Association Collaborative Access Team (IMCA-CAT) beamline at the APS, operated by the Hauptman-Woodward Medical Research Institute (HWI) on behalf of a collaboration of pharmaceutical companies, of which Pfizer is a member.

As a member of IMCA-CAT, Pfizer routinely conducts drug development experiments at the APS, and the process of narrowing down and zeroing in on this drug candidate was performed over many months, according to Lisa Keefe, executive director of IMCA-CAT and vice president for advancing therapeutics and principal scientist at Hauptman-Woodward Medical Research Institute. IMCA-CAT, she said, delivers quality results in a timely manner, much faster than the home laboratories of the companies themselves can do.

Read more on the APS website

Image: The IMCA-CAT beamline at the Advanced Photon Source, where work was done to determine the structure of Pfizer’s new COVID-19 antiviral treatment candidate.

Credit: Lisa Keefe, IMCA-CAT/Hauptman-Woodward Medical Research Institute