“foot-2-foot” interaction sheds light on bacterial conjugation

Bacteria possess mechanisms to establish communication between cells. This is especially important in bacterial conjugation, a process that allows bacteria to share genetic material. This is often used by bacteria to transfer antibiotic resistance genes and other virulence factors to neighbor cells, increasing the antibiotic resistance spread.

Now, a research team of ALBA scientists report the structural mechanism by which two proteins, Rap and Rco, act together to regulate conjugation. Rco is a repressor of conjugation, whereas Rap binds Rco and prevents Rco-mediated conjugation repression, thus resulting in an activation of the conjugation mechanism. The main results of the study show that Rap contains a binding pocket were a short peptide can bind, producing structural changes in Rap that forces its tetramerization, releasing Rco for blocking conjugation. Tetramerization occurs through an interaction that scientists named “foot-2-foot”, which differs significantly from the model proposed for other proteins of the Rap family.

Read more on the ALBA website

Image: RappLS20 tetramerization, side view of the peptide-bound tetramer. The red arrows indicate the loops connecting helices H4 and H5. (C) Zoom of the area around the N-terminus of helix H4, showing the insertion of this helix into the opposite monomer. The homotetramerization caused by the foot-2-foot interactions of the NTDs of RappLS20 provides an explanation for the activation of the RcopLS20 partner. In the absence of the peptide, the NTDs are positioned such that they allow the interaction with RcopLS20. However, upon binding the signaling peptide, the NTDs shift outwards, facilitating the formation of the homotetramer, leading to a change of the interaction surface of the NTDs that is no longer available for interactions with RcopLS20

Effective new target for breast cancer treatment

An international study led by scientists at the University of Sussex has provided strong evidence for an effective new target for breast cancer treatment. The five-year study, called “The structure-function relationship of oncogenic LMTK3” published in Science Advances, involved researchers from seven institutions across three countries including Diamond. 

The study suggests that LMTK3 inhibitors could be effectively used for the treatment of breast cancer, and potentially other types of cancer. The structure of oncogenic LMTK3 (Lemur Tyrosine Kinase 3 ) determines its role and functions allowing drug inhibition as a new therapeutic strategy.

It is hoped the research will allow the further development and optimisation of LMTK3 inhibitors as a new type of orally-administered anticancer drug for patients and have potential value not only for breast cancer patients but also for lung, stomach, thyroid and bladder cancer patients.

Read more on the Diamond Light Source website

Image: Crystal structure of LMTK3
Credit: University of Sussex