Unraveling the structural transformation of Li-rich materials in lithium-batteries

Lithium-Ion Batteries (LIBs) are essentials in everyday life in mobile applications as well as in hybrid/electric mobility. The extraordinary market success of this technology is forcing hard the need of LIBs with improved energy density, environmental compatibility and safety, making necessary to push this technology beyond the current state of the art. In this framework, Co-poor Lithium Rich Layered Oxides (LRLOs) are the most strategic alternative to current Co-rich layered oxide positive electrode materials thanks to the excellent combination of large specific capacity (>250 mAhg-1), high energy density (up to 900 WhKg-1), small costs and improved environmental benignity. The excellent performance of LRLOs derives from the peculiar combination of redox processes originated from the transition metals and the oxygen anions sublattice. The practical use of LRLOs is hindered by several drawbacks, such as voltage decay, capacity fading, and an irreversible capacity lost in the first cycle. These issues are related to structural rearrangements in the lattice upon cycling.

In this work, we demonstrate a new family of LRLOs with general formula Li1.2+xMn0.54Ni0.13Cox-yAl0.03O2 (0.03 ≤ x ≤ 0.08 and 0.03 ≤ y ≤ 0.05), obtained from the replacement of cobalt with lithium and aluminum and we highlight how the balancing of the metal blend can lead to improvements of the Coulombic efficiency in the first cycle, a better capacity retention and reduced voltage decay. To shed light on the complex crystal-chemistry of this class of LRLOs we studied the Co-poorest member of this homologue material series, namely Li1.28Mn0.54Ni0.13Co0.02Al0.03O2, in order to prove the structural evolution occurring upon charge/discharge in lithium cell. To these aims, electrodes have been recovered during the first cycle, the second cycle and after ten cycles of charge/discharge by de-assembling lithium cells into an Ar-filled glove box. These post mortem materials have been sealed in borosilicate capillary tubes (see Fig. 1a) and studied ex situ by X-ray powder diffraction at the MCX beamline.

Read more on the Elettra website

Image: Fig. 1b shows the potential curves vs time for the first two cycles and highlights the points, marked with A, B, C and so on, where the charge or discharge step was stopped and the materials recovered for analysis. According to the diffraction data (Fig. 1c), structural alterations of Li1.28Mn0.54Ni0.13Co0.02Al0.03O2 start with a fast broadening and a shift of the peaks suggesting a smooth lattice modification. When the cell reaches 4.8V vs Li+, a second phase can be identified. In the discharge process opposite structural transformations occur.