Korean scientists test the brand-new MYSTIIC

Jongwoo and his team from Seoul are “friendly users”. This name is given to scientists who do their experiments on a pristine machine, before it goes into user operation. Back in Korea we called them to hear more about their special beamtime and what it means for their battery research.

Who are you and how did you discover BESSY II?

I am Jongwoo Lim, assistant professor at the department of chemistry at Seoul National University. My research group “Battery and Energy Research Lab” counts many talented young scientists. In 2018 a colleague from the Max Planck Society invited me to give a talk and, on this occasion, I visited BESSY II. Back in Seoul I wanted my team to discover this amazing science environment.

Getting beamtime at BESSY II, how does this work?

The competition for beamtime is very strong, many scientists want to come to BESSY II! We send in a proposal and were rejected several times. Finally, after 2 years we got the green light for some beamtime at MAXYMUS, the beamline of the Max Planck Institute for Intelligent Systems (more below). And on top of that, beamline scientist Markus asked us if we were interested to use and test MYSTIIC (Microscope for x-raY Scanning Transmission In-situ Imaging of Catalysts). This new microscope will go into operation in Spring 2022.

Read more on the HZB blog science site

Image: Jongwoo’s team from Korea at BESSY II

Preparing for the next generation of batteries

In the ongoing quest to build a better battery, researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to identify the potential of using polymer composites as electrode matrices to increase the capacity of rechargeable lithium-ion (Li-ion) batteries.

“The composition of the adhesive and conductive framework for batteries hasn’t changed in years,” said Dr. Christian Kuss, assistant professor in the Department of Chemistry at the University of Manitoba and one of three researchers on the project. “But, we’re reaching the limit of how much capacity Li-Ion batteries have so this work is essentially preparing for the next generation of batteries.”

Over many cycles of charging and discharging, battery materials begin to break down, he explained. “The goal is to find new matrix materials that allow the electrode to stay intact over longer periods of time and thereby increase capacity.”

The new matrix material Kuss and his colleagues studied was based on a mixture of two polymers – one adhesive and the other conductive. The adhesive polymer is cellulose based, he said, while the conductive one “is easily synthesized and fairly cheap.” Cost is an important consideration “because you ultimately want a battery that is comparable in terms of pricing to what’s already available.”

At the CLS, the researchers used the Spectromicroscopy beamline to study the chemical structure of the polymer mixture. “With this technique, we could see the mixture and see how the polymers were distributed at a microscale.”

Read more on the CLS website

Image: Battery cyclers for running and testing batteries.