The role of synthesis gas in tomorrow’s sustainable fuels

In a new publication in Nature Communications, a team from the Dutch company Syngaschem BV and the Dutch Institute for Fundamental Energy Research elucidates for the first time some aspects of the Fischer-Tropsch reaction, used for converting synthesis gas into synthetic fuels.

Analysis performed at HIPPIE beamline at MAX IV were instrumental to achieve these results. The adoption of sustainable and renewable energy sources to permanently move beyond the dependence from fossil fuels constitutes one of the great challenges of our time. One that is made more urgent by the effects of climate change we witness on a daily basis. Electrification, such as we see in the development of electric vehicles, seems a promising strategy, but it cannot be the solution for all applications. In many cases liquid fuels are still considered the best and most efficient option. Is there a way to produce liquid fuels in an efficient and sustainable manner, one that does not rely on fossil sources?

>Read more on the MAX IV website

Toward better motors with X-ray light

Making Switzerland’s road traffic fit for the future calls for research, first and foremost. In the large-scale research facilities of PSI, chemists and engineers are investigating how to improve the efficiency of motors and reduce their emissions.

“The overall transportation system of Switzerland in 2040 is efficient in all aspects.” The primary strategic goal of the Federal Department of the Environment, Transport, Energy and Communications (DETEC) sounds good. The subordinate Swiss Federal Office of Energy (SFOE) specifies that vehicular traffic should pollute the environment less and become more energy-efficient and climate-friendly. Switzerland has set an ambitious goal for itself: to be climate-neutral by 2050.
This is a major challenge. According to the most recent “microcensus” on mobility from 2015, every person living in Switzerland travels around 24,850 kilometres per year. A high number, which also includes trips abroad. In everyday life and within Switzerland, the average per person is nearly 37 kilometres per day – and rising.
According to the Federal Office for the Environment (FOEN), cars, trucks, and buses produce three-fourths of the greenhouse gas emissions in the transportation sector. From this it follows: Whether or not the nation achieves its goal depends heavily on the motors used in these modes of transportation. Their CO2 emissions must be radically reduced. This is precisely the starting point for researchers at PSI and other institutions.

> Read more on the Swiss Light Source (PSI) website

Image: Passenger cars powered by hydrogen fuel cells have a greater range than electric cars, but they are less efficient. PSI researchers want to change that.
Credit: Adobe Stock/Graphic: Stefan Schulze-Henrichs

Enhancing solar energy production

Research investigates ways to convert titanium dioxide into a new photoactive material in the visible light range.

The search for clean and renewable energy sources has intensified in recent years due to the increase in atmospheric concentration of greenhouse gases and the consequent increase in the average temperature of the planet. One such alternative source is the conversion of sunlight into electricity through photovoltaic panels. The efficiency in this conversion depends on the intrinsic properties of the materials used in the manufacturing of the panels, and it increases year by year with the discovery of new and better materials. As such, solar energy is expected to become one of the main sources of electric energy by the middle of this century, according to the International Energy Agency (IEA).

Titanium dioxide (TiO2) is an abundant, nontoxic, biologically inert and chemically stable material, known primarily as a white pigment used in paints, cosmetics and even toothpastes. TiO2 is also often used in sunscreens since it is especially capable of absorbing radiation in the ultraviolet region. However, this same property severely limits the use of TiO2 for solar energy conversion, since the ultraviolet emission comprises only 5 to 8% of the total energy of the solar light.

Can this TiO2 property be extended to the visible light region to increase the conversion of sunlight into electricity? To answer this question, Maria Pilar de Lara-Castells et al. [1] conducted an innovative research in which they discuss how a special treatment can change the optical properties of TiO2.

>Read more on the Brazilian Synchrotron Light Laboratory website

Real-time characterisation of a new miniature-honeycomb fuel cell

A team from Imperial College has designed a miniature ceramic solid oxide fuel cell with excellent properties and together with scientists from the University College London, the company Finden and the ESRF, they characterised the cell as it works on beamline ID15A, confirming the great performances of the new device.

Ceramic fuel cells are considered as one of the most promising technologies for sustainable energy generation thanks to their interesting features, such as higher efficiency compared to conventional combustion-based power plants, high operating temperatures (600 – 1000 °C) that generate high-grade waste heat, and superior fuel flexibility that allows the direct utilization of hydrocarbons.

To date, ceramic fuel cells are used in a wide range of applications, including stationary power supply, combined heat and power system (CHP), auxiliary power units (APU), etc., and will continue receiving attention as shale gas and biofuels are becoming the premium fuel choices thanks to their low carbon footprint.

>Read more on the European Synchrotron website

Image: Micro-computed tomography and X-ray diffraction computed tomography images. XRD-CT maps of LSM (green), YSZ (red) and NiO (blue) have been overlaid on top of a micro-CT image collected at the same z position. The scale bar corresponds to 0.5 mm.
Credit: Tao Li.

First in situ X-ray Absorption study of liquid battery cells

A greener future depends on better batteries: to move away from fossil fuels, we need rechargeable batteries with higher power and energy density to store intermittent energy from solar and wind. Moreover, these batteries could completely replace fossil fuels in vehicles.

Metal-air batteries seem like the answer, with the highest theoretical ability to pack energy into a small space (a property called energy density) of all current battery types.
“If we can achieve the theoretical energy density of metal air batteries and use them in vehicles, we can have much more driving range and make them more competitive with internal combustion engines that are currently used in cars,” says Mohammad Banis, a Western University researcher whose recent work looked at the charge and discharge cycles of a sodium-air battery in action.

Banis, who works in Andy Xueliang Sun’s clean energy research group at Western, spent a full year stationed at the Canadian Light Source to develop new tools for battery research. Observing the real time behaviour of material during charge cycles of a metal air battery presents a puzzle: the soft X-ray technique used typically requires a vacuum chamber, which makes it particularly difficult to study a liquid system.

>Read more on the Canadian Light Source website.

Image: Mohammad Banis at a Canadian Light Source beamline where he studies batteries.