#SynchroLightAt75 campaign launches on International Day of Light

The SRS at Daresbury Laboratory in the UK was the world’s first dedicated synchrotron light source facility. It opened in 1980 and delivered worldwide impact and two Nobel Prizes.

The first of its kind, the SRS enabled research that has improved the quality of our lives in so many ways. This included research into diseases such as HIV and AIDS, as well as motor neurone disease, to name just a few examples. The structure of the Foot & Mouth virus was solved for the first time at the SRS – it was the first animal virus structure to be determined in Europe and led to the development of a vaccine. The huge magnetic memory of the Apple iPod was also the result of research carried out on the SRS. However, its most famous achievement was the key role it played towards a share of two Nobel Prizes in Chemistry.  One to Sir John Walker in 1997, for solving a structure of an enzyme that opened the way for new insights into metabolic diseases, and the other to Sir Venki Ramakrishnan in 2009, for his work on the structure and function of the Ribosome, the particle responsible for protein synthesis in living cells.

During its lifetime, the SRS created a critical mass of highly skilled engineers and technicians at Daresbury Laboratory, with specialisms ranging from detectors to magnets and electronics, and by the time it closed in 2008, it had collaborated with almost every country active in scientific research. It had hosted over 11,000 users from academia, government laboratories and industry worldwide, leading to the publication of more than 5000 research papers, resulting in numerous patents. The economic impact of this was vast on a worldwide scale, but it also played an important role in boosting the regional economy of the North West, having worked with hundreds of local businesses.

The success of the SRS led to the development of many similar machines around the world, with the technologies and skills developed still in use at many facilities today, including its UK successor, the Diamond Light Source at Harwell Science and Innovation Campus in Oxfordshire. It also led to the establishment of ASTeC, a leading centre for accelerator science and technology at Daresbury Laboratory, and the Cockcroft Institute, a joint venture between STFC and the Universities of Lancaster, Liverpool, Manchester and Strathclyde. It is also home to CLARA, a unique particle accelerator designed to develop, test and advance accelerator technologies of the future. Research carried out by accelerator scientists at Daresbury has had many impacts, particularly in the health and medicine arena, including work to develop our next generation of proton imaging technology for cancer detection, and research that could one day lead to more efficient diagnoses of cervical, oesophageal, and prostate cancers. In the footsteps of  senior scientist, Professor Ian Munro, who was responsible for the plan to build the SRS and for its operation at Daresbury, ASTeC’s accelerator scientists and engineers continue to play a key role in designing, building and upgrading the world’s newest generations of accelerator facilities.

Read more on the STFC/UKRI website

Image: The SRS control room


Credit: STFC

Metal-Organic Frameworks can capture toxic air pollutants

The air that we breathe

According to the World Health Organisation1 (WHO), 92% of people worldwide live in places with poor air quality, and outdoor air pollution causes 4.2 million deaths a year, with another 3.8 million caused by indoor air pollution.

Figures published by Public Health England2 showed that the health and social care costs of air pollution in England alone were £42.88 million in 2017 and could reach £5.3 billion by 2035.

There are many different types of air pollution, which arise from a wide range of sources. In the UK, five types are of particular concern: 

  1. The mixture of liquid droplets and solid particles found in the air is called particulate matter (PM). Some PM comes from natural sources (e.g., pollen, sea spray and desert dust), but it also includes dust from car exhausts, brakes and tyres and smoke. PM is classified according to size, with PM2.5 (particles less than 2.5 micrometres across) able to reach and damage the lungs and other organs.
  2. Volatile organic compounds (VOCs) are a range of organic molecules that display similar behaviour in the atmosphere. These include vapours from household products such as air fresheners, cleaning products and perfumes, as well as petrol and solvents.
  3. Ammonia (NH3) gas is mainly released from agricultural sources such as slurry, other rotting farm waste and fertilisers.
  4. Nitrogen oxide (NOx) gases, including nitrogen dioxide (NO2), are mainly created by burning fossil fuels. 
  5. Sulphur dioxide (SO2) is an acidic gas that can irritate airways, particularly in people with asthma.

SO2 and NO2 are both reactive, corrosive gases. Removing them from the air is challenging but would have enormous benefits for human health. 

Can we clean up our act with MOFs?

Metal-Organic Frameworks (MOFs) are sponge-like materials that can adsorb and hold “guest” molecules. By fine-tuning their properties – pore size and geometry, framework topology and chemical functionality – they can be tailored for specific applications, including gas adsorption, separation, catalysis, substrate binding and delivery. MOFs containing open metal sites (OMSs), in particular, can provide highly selective adsorption of target gases. 

However, stable MOFs with OMSs are rare, as are MOF materials that can reversibly adsorb SO2 and NO2. While there are already over 100,000 known MOFs (and over half a million structures have so far been predicted), screening each one individually for its suitability for this application would be time-consuming and costly. A far better approach is to improve our understanding of the mechanism of active sites within capture materials so that we can design or discover new functional MOF materials. This in itself is a challenging task, as host-guest interactions are often dynamic processes, where multiple binding sites of similar energies affect the movement of guest molecules in the pores.

Using synchrotron techniques, an international team of researchers has described the synthesis, crystal structure and gas adsorption and separation properties of a unique {Ni12}- wheel-based MOF that exhibits high isothermal uptake of SO2 and NO2.

Using single crystal X-ray diffraction (SCXRD) at the Advanced Light Source in California and infrared (IR) single crystal micro-spectroscopy at Diamond’s B22 beamline, the team performed dynamic breakthrough experiments that confirmed the selective retention of SO2 and NO2 at low concentrations under dry conditions. Their results show, at a crystallographic resolution, a detailed molecular mechanism with reversible coordination of SO2 and NO2 at the six open Ni(II) sites on the {Ni12}-wheel and at oxygen atom and ligand sites. 

Read more on the Diamond website

Image: Artist’s impression of the unique {Ni12}- wheel-based MOF in action, exhibiting high isothermal uptake of SO2 and NO2.


Credit: Dr Sihai Yang

New angle for perovskite research

Perovskite materials offer the potential for cheaper optoelectronic devices such as solar cells. Of these, the formamidinium (FA)-based FAPbI3 crystal is one of the most promising – it has a bandgap close to ideal and is very thermally stable. However, photoactive cubic (α)-FAPbI3 perovskite phase is highly unstable and quickly transforms into the non-perovskite yellow phase at room temperature in ambient atmosphere, which affects the performance of photovoltaic devices. Alloying of FA-based perovskite with caesium, methylammonium (MA) cations or a combination of both can keep the perovskite in its more efficient phase at lower temperatures. However, this can give patchy results, leading to power losses.

In work recently published in Science, researchers from the University of Cambridge Department of Chemical Engineering and Biotechnology (CEB) and the Cavendish Laboratory investigated the crystal structure of the alloyed perovskite materials to understand why adding cations improved their performance. Their results show that cation alloying induces a minor octahedral tilt that keeps the perovskite material in its highly efficient phase, and is a step towards commercial production of stable and efficient perovskite-based solar cells. 

A small distortion makes a big difference

Formamidinium (FA)-based perovskites have much better thermal stability than the methylammonium (MA)-based absorber layers commonly used in early perovskite-based solar cells. FAPbI3 is a particularly promising material, but its photoactive phase is only stable at high temperatures (above 150ºC) in inert atmosphere. It transitions to a hexagonal phase with poor optoelectronic performance at lower temperatures.  

It has been shown empirically that alloying FAPbI3 with methylammonium (MA) cations or caesium (or both) improves stability. However, although this approach led to record efficiencies, the mechanism underlying it was not fully understood. It also produces uneven materials with patches of instability that lead to performance losses. 

Co-lead author Tiarnan Doherty was a PhD student at the Cavendish Laboratory and is now an Oppenheimer Fellow in CEB. He says:

We wanted to investigate the atomic structure of the alloyed perovskite materials, but they’re very sensitive to damage. So we brought the samples to ePSIC for high-resolution electron microscopy with a low electron dose. We also used nano X-ray diffraction on beamline I14. That beamline has very sensitive detectors, which allowed us to achieve our results using low X-ray exposures.

Read more on the Diamond website

Image: Artist’s impression of formamidinium (FA)-based crystal

Credit: Tiarnan Doherty, University of Cambridge

More to life than light

The #LightSourceSelfies video campaign highlights the dedication and enthusiasm that is felt by those working in this field. To maintain a sense of physical and mental wellbeing, it is also important to make time for non-work related things like family, hobbies and interests. This montage, with contributors from the ESRF, ALS, MAX IV and Diamond, gives a flavour of the wide range of activities that those in the light source community enjoy when they are not working.

Science that just can’t wait until morning!

We know by now that coffee ranks highly on the list of things that help get light source users through their night shifts. This #LightSourceSelfie also include insights on positive thinking that can provide a much needed boost to get you through to the morning. These insights are brought to you from staff scientists at LCLS and NSLS-II in the USA and Diamond in the UK.

A supportive environment where you can learn and grow

Diamond’s #LightSourceSelfie

Nina Vyas (PDRA in correlative microscopy) and Nina Perry (Diamond Year in Industry student) filmed their #LightSourceSelfie on Diamond’s B24 beamline. B24 is a correlative cryo-imaging beamline offering 3D imaging with soft X-ray tomography (cryoSXT) complemented by super resolution fluorescence structured illumination microscopy (cryoSIM).

With only a few places in the world where researchers can access this type of equipment, working at B24 is exciting as the experiments being done are destined to have a positive impact on global health. In their #LightSourceSelfie, Nina and Nina recall their first day working on the beamline. They also describe the collaborative, supportive environment that exists, ensuring early career researchers are given the help they need to learn new skills.

Beyond B24, Diamond’s other beamlines are supporting science across a wide range of fields and, as Nina Perry says, “Some of the best things about working at light sources is the variety of science and experiments that are going on around you. We work in a biological lab but just next door there is chemistry and physics experiments, cultural heritage investigations and all sorts. The variety is endless.”

Learn more about Diamond’s B24 beamline here

Trigger of rare blood clots with AstraZeneca and other COVID vaccines found by scientists

understanding rare blood clots caused by some  COVID vaccines – important first to prevention

A collaborative team from the School of Medicine at the University of Cardiff, Wales and a range of US institutions used the UK’s national synchrotron, Diamond Light Source, to help reveal the details of how a protein in the blood is attracted to a key component of Adenovirus based vaccines.  

It is believed this protein kicks off a chain reaction, involving the immune system, that can culminate in extremely rare but dangerous blood clots. The Cardiff team were given emergency government funding to find the answers. In collaboration with scientists in the US and from AstraZeneca, they set out to collect data on the structure of the vaccines and perform computer simulations and related experiments to try and uncover why some of the vaccines based on Adenoviruses were causing blood clots in rare cases.  

Moderna and BioNTech are based on mRNA, whereas AstraZeneca and Johnson & Johnson are based on Adenoviruses. Blood clots have only been associated with vaccines that use Adenoviruses.

Read more on the Diamond website

Image: Crystallisation of ChAdOx1 fibre-knob protein results in 4 copies of the expected trimer per asymmetric unit and reveals side-chain locations. The crystal structure was solved with 12 copies of the monomer in the asymmetric unit, packing to form 3 trimeric biological assemblies. Density was sufficient to provide a complete structure in all copies.

Credit: Image reused from DOI: 10.1126/sciadv.abl8213 under the CC BY 2.0 license. 

Collaboration: a watchword for the light source community

Scientists Nina Perry and Nina Vyas, from Diamond Light Source (https://diamond.ac.uk – the UK’s synchrotron), along with SaeHwan Chun, scientist at the PAL-XFEL (https://pal.postech.ac.kr/paleng/ – the Free Electron Laser in South Korea) talk about a theme that is common to all light sources around the world, and indeed to science and all its associated disciplines. Cooperation and collaboration, and their benefits for scientists’ wellbeing as well as the science, are highlighted in this #LightSourceSelfie video.

Nina Perry & Ninya Vyas, on Beamline B24 at Diamond Light Source, the UK’s synchrotron science facility

Paving the way for more effective pancreatic cancer research

A team of scientists led by the University of Surrey used Diamond’s B16 Beamline, a flexible and versatile beamline for testing new developments in optics and detector technology and for trialling new experimental techniques, to better understand the structure of cancer cells. 

By using the synchrotron, the team were able to complete sophisticated examinations of the characteristics of cell structures at a nano level and even at an atomic scale and to investigate how cells and materials interact with each other.  

To improve cancer screening and treatment, researchers need accurate models of cancer tissues on which to experiment. Previous research made significant progress in building accurate, novel 3D models which mimic features of a pancreatic tumour, such as structure, porosity and protein composition.

Read more on the Diamond website

Image: Inside the experimental hutch at Diamond’s B16 beamline.

Credit: Diamond Light Source

Developing unbreakable screens

Cracked phone screens could become a thing of the past thanks to breakthrough research by a global team of scientists

Diamond’s electron Physical Science Imaging Centre (ePSIC) was used in a study that has unlocked the technology to produce next-generation composite glass for lighting LEDs as well as smartphone, television and computer screens. 

The research was recently published in the journal Science and was carried out by an international collaboration involving scientists and engineers from the University of Queensland, University of Leeds, University of Cambridge and Université Paris-Saclay. The findings will enable the manufacture of glass screens that are not only unbreakable but also deliver crystal clear image quality.  

Better LEDs 

The study is focused on nanocrystal materials known as lead halide perovskites, which are promising candidates for light emitting diodes. A powerful electron microscope at ePSIC allowed the team to study the structure of this material. The breakthrough has been the ability to stabilise a particular crystal at room temperature.   

Read more on the Diamond website

Image: Examples of the fabricated glass composite shown under a UV light (black light) to reveal the emission of bright and pure colours. The colour of light emitted from each sample is determined by the chemistry and the size of the nanocrystals embedded in a metal-organic framework glass.

Credit: University of Queensland.

Nano-precision metrology of X-ray mirrors

Synchrotrons work like a giant microscope, and they both need mirrors and lenses to bend and shape light. The better control we have over the light source, the more we can see. The quality of images that can be captured using a microscope or a synchrotron rely heavily on the optics used.

As technology has advanced over the past few decades and as synchrotron users push the boundaries of what can be achieved, there has been a lot of excitement over the upgrades of synchrotron mirrors and what that can mean for the experiments that can be done.

However, there is a bottleneck for the production of new and improved X-ray optics like mirrors. It turns out that it is hard to develop metrology instruments that can validate and measure the quality of new high-precision mirrors. Producing these instruments and alleviating the bottleneck is the goal of the metrology community, as they say, if you cannot test something, you cannot manufacture it.

Using the properties of speckle to get better measurements

The metrology community has made significant advances by making improvements to existing techniques to test X-ray mirrors. However, a team from Diamond set about creating a brand-new instrument which can potentially improve the toolbox for metrologists and manufacturers around the world.

Read more on the Diamond website

Image: Dr Hongchang Wang (Left) is supervising his PhD student Simone Moriconi (Right) for testing SAM system

Science Advances cover dedicated to research results on Cryo-EM

The research carried out at NCPS SOLARIS with the use of electron cryomicroscopy and at the Malopolska Biotechnology Centre, and at the British National Electron Bioimaging Center eBIC (Diamond Light Source) allowed to solve the structure of the protein responsible for introducing compounds necessary for the life of bacterial cells. The exceptional importance of the research was honored with a dedicated, unique image by Alina Kurokhtina published on the cover of Science Advances!

Bacterial species are under continuous warfare with each other for access to nutrients. To gain an advantage in this struggle, they produce antibacterial compounds that target and kill their competitors. Different species of bacteria, including ones that live inside us, can battle each other for scarce resources using a variety of tactics. Now, researchers from the laboratories of Prof Jonathan Heddle from Malopolska Centre of Biotechnology, Jagiellonian University, Krakow and Dr Konstantinos Beis at Research Complex at Harwell /Imperial College, London, have uncovered the mechanism of one such tactic in work that may eventually lead to the development of new antibacterials.

Read more on the SOLARIS website

Image: A view of the determined SbmA structure in gold

Credit: Alina Kurokhtina

Molecular IgG3 structure paves the way for new applications of antibodies

A combination of scattering and analytical techniques has provided the first atomic-level structural model for the IgG3 antibody

In humans, Immunoglobulin (IgG) is the most common type of antibody found in blood circulation. IgG molecules are created by plasma B cells, and there are four subclasses. Of the four, IgG3 is the least understood. It has a uniquely long hinge region separating its Fab antigen-binding and Fc receptor-binding regions. The presence of this elongated hinge makes it challenging to perform structural studies, for example, with X-ray crystallography. Due to this lack of structural information, IgG3 is the only subclass not currently exploited for therapeutic uses. In work recently published in the Journal of Biological Chemistry, researchers from University College London and the University of Birmingham have used a combination of imaging and analytical methods to provide the first experimentally determined molecular structural model for a full-length IgG3 antibody. This new information should enable the use of IgG3 to develop new therapies and antibody tests. 

Getting a good look at IgG3

A high-resolution structure for part of the IgG3 molecule, the globular IgG3-Fc fragment, is available. And previous studies of the whole molecule using Small Angle X-ray Scattering (SAXS) and analytical ultracentrifugation (AUC) showed that IgG3 is elongated compared to IgG1, IgG2 and IgG4. SAXS also showed that IgG3 has a more extended central hinge than IgG1 and IgG2 that links its three globular regions together.  

Read more on the Diamond website

Image: The IgG3 structural model is formed from two globular Fab regions, a long hinge in the centre, and one Fc region, as shown from the scattering modelling fits. The structure is reminiscent of a giraffe with an extended and semi-rigid neck.

Credit:
Dr Valentina Spiteri, UCL.

Diamond-II programme set to transform UK science

Diamond Light Source has established itself as a world-class synchrotron facility enabling research by leading academic and industrial groups in physical and life sciences. Diamond has pioneered a model of highly efficient and uncompromised infrastructure offered as a user-focussed service driven by technical and engineering innovation.

To continue delivering the world-changing science that Diamond leads and enables, Diamond-II is a co-ordinated programme of development that combines a new machine and new beamlines with a comprehensive series of upgrades to optics, detectors, sample environments, sample delivery capabilities and computing. The user experience will be further enhanced through access to integrated and correlative methods as well as broad application of automation in both instrumentation and analysis. Diamond-II will be transformative in both spatial resolution and throughput and will offer users streamlined access to enhanced instruments for life and physical sciences.

Read more on the Diamond website

Image: Diamond’s synchrotron building

Credit: Diamond Light Source

Critical data of insect specimens to be unlocked through 3D imaging

The Natural History Museum is collaborating with Diamond Light Source, the UK’s national synchrotron science facility, on an ambitious project to generate and share immense data from the Museum’s vast insect collections to help further research into their evolution, diversity and extinctions. The Natural History Museum is collaborating with Diamond Light Source, the UK’s national synchrotron science facility, on an ambitious project to generate and share immense data from the Museum’s vast insect collections to help further research into their evolution, diversity and extinctions.

Over 1.6 million of the Museum’s 35 million insects have already been digitised using 2D photography. These specimens have had their images and collections data (information about where in time and space they were collected and what species they are) made available to the public via the Museum’s Data Portal. However, this landmark project is expected to provide valuable new insights and information by providing the beginnings of a high-resolution 3D dataset for all living and fossil insects and their close relatives.

Read more on the Diamond website

Image: Hairy Fungus Beetle – Prepared by Malte Storm

Credit: Diamond Light Source Ltd

Diamond helps find a way to improve accuracy of Lateral Flow Tests

A recent study has found a way to help reduce false-negative results in Lateral Flow Tests by a simple modification.

Using X-ray fluorescence imaging at Diamond, researchers from King’s College London set out to identify what could be causing these false-negative results, and what potential modifications could enable increased accuracy.

They identified that the underlying technology of the Lateral Flow Devices is highly accurate and able to theoretically detect trace amounts of the COVID-19 virus, but the limitations fall to the read-out of the device – the technology used to communicate the result of the test.

The study, published in ACS Materials and Interfaces, suggests  several potentially simple modifications to the Lateral Flow Devices that could lead to improved performance.

read more on the Diamond website