Researchers identify lithium hydride and a new form of lithium fluoride in the interphase of lithium metal anodes

A team of researchers led by chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has identified new details of the reaction mechanism that takes place in batteries with lithium metal anodes. The findings, published today in Nature Nanotechnology, are a major step towards developing smaller, lighter, and less expensive batteries for electric vehicles.

Recreating lithium metal anodes

Conventional lithium-ion batteries can be found in a variety of electronics, from smartphones to electric vehicles. While lithium-ion batteries have enabled the widespread use of many technologies, they still face challenges in powering electric vehicles over long distances.

To build a battery better suited for electric vehicles, researchers across several national laboratories and DOE-sponsored universities have formed a consortium called Battery500, led by DOE’s Pacific Northwest National Laboratory (PNNL). Their goal is to make battery cells with an energy density of 500 watt-hours per kilogram, which is more than double the energy density of today’s state-of-the-art batteries. To do so, the consortium is focusing on batteries made with lithium metal anodes.

Read more on the BNL website

Image: Brookhaven chemists Enyuan Hu (left, lead author) and Zulipiya Shadike (right, first author) are shown holding a model of 1,2-dimethoxyethane, a solvent for lithium metal battery electrolytes.

Graphite electrodes for rechargeable batteries investigated

Rechargeable graphite dual ion batteries are inexpensive and powerful.

A team of the Technical University of Berlin has investigated at the EDDI Beamline of BESSY II how the morphology of the graphite electrodes changes reversibly during cycling (operando).

The 3D X-ray tomography images combined with simultaneous diffraction now allow a precise evaluation of the processes, especially of changes in the volume of the electrodes. This can help to further optimise graphite electrodes.

Read more on the HZB website

Image: The tomogram during the charging process shows the spatially resolved changes in the graphite electrode thickness of a rechargeable aluminium ion battery in a discharged and charged state.

Credit: © HZB