Opening Ceremony for the new ASTRA (SOLABS) beamline

On 29 June 2022, the official opening ceremony was held for the ASTRA beamline (formerly SOLABS), a beamline dedicated to measurements using X-ray absorption spectroscopy (XAS) in the energy range of 1 keV to 15 keV. The ceremony was attended by a number of distinguished guests along with the international team involved in building the beamline.

International cooperation is the key to success.

The ASTRA beamline was created thanks to the cooperation of 4 scientific institutions, the Hochschule Niederrhein University of Applied Sciences (Germany), Synchrotron Light Research Institute (Thailand), the Institute of Physics at Bonn University (Germany), and the SOLARIS Center.

Read more on the Solaris website

Image: Starting from right to left: Prof. Alexander Prange (Hochschule Niederrhein), Dr Thomas Grünewald (Hochschule Niederrhein), Prof. Stanisław Kistryn (Jagiellonian University), Prof. Marek Stankiewicz (SOLARIS, JU), Dr Michael Groß (Consul General of Germany), Prof. Josef Hormes (University of Bonn). Further Dr Alexey Maximenko (SOLARIS), Dr Henning Lichtenberg (Hochschule Niederrhein), Marcel Piszak (SOLARIS) – credit Solaris Synchrotron. 

Reshaping the world of research through remote experimentation

We all remember the impact of stay-at-home-orders on our everyday lives in spring 2020. However, it was not only restaurants, salons, flower shops, and bookstores that had to close their doors. National user research facilities shut down most operations, closing the doors to thousands of visiting scientists, and bringing research on new batteries, pharmaceutical drugs, and many other materials to a grinding halt, at a time when the country needed these facilities more than ever. So, seven user research facilities decided to form a team of experts, the Remote Access Working Group (RAWG), to figure out how these facilities could keep the science going even when the researchers couldn’t access them in person.

The solution is as simple as it is difficult. Research facilities that serve visiting researchers have to create an environment in which experiments can be run from afar – with nearly no human interaction. Scientists have dubbed this new way of doing research remote experimentation. While each facility started the unexpected journey to remote experimentation on their own, the RAWG has brought all the different ideas together to help each facility overcome the numerous challenges encountered along the way.

Most challenges result from the nature of how these facilities operate. All seven facilities are neutron or light sources funded by the U.S. Department of Energy (DOE) Office of Science. This means they generate highly intense beams of neutrons or x-rays that visiting scientists use to study the inner workings of materials. These visiting researchers, or users, collaborate with facility staff to study everything from ancient mummies to novel quantum materials, generating new knowledge daily.

The Desolation of COVID-19

In a world before COVID-19, these user facilities were a hub for research teams. Scientists traveled to them, used unique tools to study their materials, worked with brilliant people on all kinds of scientific questions, then left the facility with new data that could answer these questions. With the ongoing pandemic, travelling to a facility in a different state—let alone a different country—is not an option. And with this, the well-established cycle of creating new knowledge was broken.

To re-start this cycle without going back to the old ways, each facility was confronted with a host of challenges that ranged from how to control an experiment from afar to how to get the samples to the facility in the first place. This was just the tip of the iceberg of issues the pandemic created. The RAWG’s mission is to share experiences and solutions for these issues among the facilities.

The Fellowship of Remote Experimentation

The RAWG was built upon the existing collaboration of the five DOE light source facilities. Their directors meet twice a year to discuss common challenges so that they can form teams to tackle various issues. So, it was only natural to join forces again when COVID-19 hit.

Read more on the Brookhaven website

Image: Beamline scientist, Olaf Borkiewicz from the APS, is wearing a Hololens for a virtual session of National School on Neutron and X-Ray Scattering held each summer. (Note: This photo was taken while fully vaccinated individuals were allowed to not wear masks indoors.) 

Credit: APS, Argonne National Laboratory