Particle accelerators drive decades of discoveries at Berkeley Lab and beyond

Berkeley Lab’s expertise in accelerator technologies has spiraled out from Ernest Lawrence’s earliest cyclotron to advanced compact accelerators.

Accelerators have been at the heart of the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) since its inception in 1931, and are still a driving force in the Laboratory’s mission and its R&D program. Ernest O. Lawrence’s invention of the cyclotron, the first circular particle accelerator – and the development of progressively larger versions – led him to build on the hillside overlooking the UC Berkeley campus that is now Berkeley Lab’s home. A variety of large cyclotrons are in use today around the world, and new accelerator technologies continue to drive progress.
“Our work in accelerators and related technologies has shaped the growth and diversification of Berkeley Lab over its long history, and remains a vital core competency today,” said James Symons, associate laboratory director for Berkeley Lab’s Physical Sciences Area.

>Read more on the ALS at Berkeley Lab website

Enjoy this video:

The power of radio!

A century after the invention of radio, the oscillating electric fields initially generated for communication now perform a fundamental function in all accelerators.

Instead of being broadcast to the world, radiofrequency (RF) energy at Diamond is trapped in resonating metal cavities to generate the electric fields that bring Diamond’s electrons up to speed.

The journey of an electron from source to storage ring is a tale of high power, split-second timing and frankly terrifying voltages. It begins in the linac gun where energetic, hot electrons are sucked away from a metal cathode by 90,000 volts and directed into the linear accelerator, or linac. The electrons travel down the linac together with precisely timed 16 megawatt blasts of microwaves generated by klystron amplifiers that themselves operate at pulsed voltages in excess of 200,000 volts. Electrons are accelerated towards the speed of light in the linac and then injected into the booster synchrotron where they complete many orbits over a tenth of a second.

>Read more on the Diamond Light Source website

Image: The linac, with the gun at the far end and the accelerating structures coming towards us.