Milestone in ALS-Upgrade project will bring in a new ring

Construction of innovative accumulator ring as part of ALS-U project will keep Berkeley Lab at the forefront of synchrotron light source science.

An upgrade of the Advanced Light Source (ALS) at the U.S. Department of Energy’s (DOE’s) Lawrence Berkeley National Laboratory (Berkeley Lab) has passed an important milestone that will help to maintain the ALS’ world-leading capabilities.

On Dec. 23 the DOE granted approval for a key funding step that will allow the project to start construction on a new inner electron storage ring. Known as an accumulator ring, this inner ring will feed the upgraded facility’s main light-producing storage ring, and is a part of the upgrade project (ALS-U).

This latest approval, known as CD-3a, authorizes an important release of funds that will be used to purchase equipment and formally approves the start of construction on the accumulator ring.

>Read more on the Advanced Light Source at Berkeley Lab website

Image: This cutaway rendering of the Advanced Light Source dome shows the layout of three electron-accelerating rings. A new approval step in the ALS Upgrade project will allow the installation of the middle ring, known as the accumulator ring.
Credit: Matthaeus Leitner/Berkeley Lab

First light for SESAME’s MS beamline

On Monday, 23rd December 2019, at 13:21, scientists at the SESAME light source successfully delivered the first X-ray monochromatic beam to the experimental station of the Materials Science (MS) beamline, that will be used in applications of the X-ray powder diffraction (XRD) technique in materials science, The beamline will provide a powerful tool for studying microcrystalline or disordered/amorphous material on the atomic scale, the evolution of nano-scale structures and materials in various environmental conditions and for developing and characterising new smart materials.  

To have seen the X-ray signal inside the MS experimental station was very exciting said the MS beamline scientist, Mahmoud Abdellatief. It was the realization of four years of hard work, and has given me added stimulus for the new challenges lying ahead before the beamline may host users in some six months. 

Picture: SESAME scientists just after obtaining the first monochromatic X-ray fluorescence signal (from left to right: Mahmoud Abdellatief, MS beamline scientist, Messaoud Harfouche, XAFS/XRF beamline scientist, and Gihan Kamel, IR beamline scientist)
Credit: SESAME

First x-ray microtomography images obtained at Sirius

Two days after storing electrons in Sirius’ storage ring, the CNPEM´s team have performed the first x-ray microtomography analysis at the new Brazilian synchrotron light source. Through a simple proof of concept experiment, using less than ten thousandth of the expected power, it was possible to observe the arrival of synchrotron light for the first time in one of Sirius’ future experimental stations. This is a major milestone for the project, and a victory for Brazil’s science and technology.

“These early rock microtomography demonstrate the functionality of this great machine, designed and built by Brazilians to bring our science to a new level. Sirius is still in the early stages of commissioning, but these early tests that allowed X-ray images to be made ensure that the future will be very bright! We are very excited about the possibility to provide to the Brazilian scientific community a new level of experimental techniques as soon as possible”, said Antonio José Roque da Silva, Director General of CNPEM and the Sirius Project.
The first images were taken at one of the beamlines set up for testing, using X-ray tomography imaging techniques. These analyses mark another important milestone in the Sirius commissioning process. The team is now dedicated to achieving higher and higher currents needed to produce synchrotron light of enough intensity for the first scientific experiments.

>Read more on the LNLS website

Image: (screenshot) Projection of a carbonate rock sample, which has the same composition of the rocks from the Brazilian pre-salt reservoirs.

Sirius reaches his first stored electron beam

The new Brazilian synchrotron light source continues its successful commissioning

On Saturday, December 14th, CNPEM’s team stored electrons in Sirius’s storage ring for several hours. This is a prerequisite for producing synchrotron light, and it happens only a few weeks after the first electron loop around the main accelerator was achieved.
In addition, on Monday, December 16th, with the connection of the accelerator to one of the beamlines set up for testing, it was possible to receive the first X-ray pulse, still discrete due to the small number of circulating electrons.
The achievement came after an intense and thorough work of adjusting hundreds of equipment parameters, another very important milestone in the Sirius commissioning process. The team is now dedicated to achieving higher and higher currents needed to produce synchrotron light of enough intensity for the first scientific experiments.
Sirius is the largest and most complex scientific infrastructure ever built in Brazil and one of the first 4th generation synchrotron light source to be built in the world and it was designed to put Brazil at the forefront of this type of technology.

>Read more on the LNLS website

First stored beam

6 December, 12.30 pm. Today, the electrons have been stored for the first time, in the new Extremely Brilliant Source (EBS) storage ring.

Today, 6 December 12:30 pm was a great and intense moment for all the ESRF teams: the electrons have been stored for the first time in the new EBS storage ring, only five days after the start of the EBS storage ring commissioning. This is a new key milestone on the way to opening to the international scientific community the first high-energy fourth-generation synchrotron light source, known as EBS – Extremely Brilliant Source.

” Seeing the first beam stored only five days after the start of the commissioning is a huge achievement and an intense moment for all involved. EBS is becoming a reality.” said Pantaleo Raimondi, ESRF accelerator and source director and EBS storage ring concept inventor and project leader.

>Read more on the European Synchrotron website

17th Users’ Meeting at SESAME and inauguration of the guest house

Some 80 scientists from the region and beyond are meeting at SESAME on 30 November and 1 December to discuss the scientific programme and latest results from the laboratory. For the first time, the Users’ meeting is being held on the SESAME campus in a new guest house and meeting facility. Another first this year is that the meeting is being held jointly with the European Synchrotron and FEL User Organisation, ESUO, a sign of SESAME’s growing integration into the international research landscape.

The programme opened with a welcome from the Laboratory’s Director, Khaled Toukan, and an update on the SESAME scientific programme and beamlines. It continued with presentations of results from experiments conducted at SESAME. There were also presentations from representatives of European light sources, as well as from the OPEN SESAME consortium, an EU funded project that has provided training support since 2017 and concludes this year, the BEATS consortium, another EU funded project building a tomography beamline at SESAME, and from HESEB, a SESAME-Helmholtz collaboration for the installation of a new soft X-ray beamline.

>Read more on the SESAME website
Image: A group photo for the 17th annual SESAME Users’ meeting.
Credit: SESAME.

Article about the inauguration of SESAME’s guest house.

More magnets, smoother curves: the Swiss Light Source upgrade

The Swiss Light Source SLS is set to undergo an upgrade in the coming years: SLS 2.0.

The renovation is made possible by the latest technologies and will create a large-scale research facility that will meet the needs of researchers for decades to come.

Since 2001, “the UFO” has been providing reliable and excellent service: In the circular building of the Swiss Light Source SLS, researchers from PSI and all over the world carry out cutting-edge research. For example, they can investigate the electronic properties of novel materials, determine the structure of medically relevant proteins, and make visible the nanostructure of a human bone.
“Internationally, the SLS has been setting standards for nearly two decades”, says Terence Garvey, SLS 2.0 accelerator project head. Now, Garvey continues, it’s time for a modernisation. In the coming years, SLS is expected to undergo an upgrade with the project title SLS 2.0. SLS will remain within the same UFO-shaped building, but will get changes in crucial areas inside. Garvey is one of the two project leaders for the upgrade, together with Philip Willmott.

Swiss Light Source (SLS) , , ,

First electrons turn in the ESRF’s Extremely Brilliant Source Storage Ring

This is an important milestone on the way to opening to the international scientific community the first high-energy fourth-generation synchrotron light source, known as EBS – Extremely Brilliant Source.

It marks the successful completion of the engineering and installation of a worldwide-unique accelerator within the existing ESRF infrastructure, and the start of the commissioning phase of a brand-new generation of high-energy synchrotron.
Expectation was high in the ESRF’s control room on 2 December as teams carefully monitored the first turns of the electrons around the new EBS storage ring. “Seeing the first electrons circulating is a huge achievement and proof of the hard work and expertise of the teams who have been working on this since 2015,” said Pantaleo Raimondi, ESRF accelerator and source director and EBS storage ring concept inventor and project leader. “It’s a great moment for all involved.”

>Read more on the ESRF website

Image: The first three turns of electrons in the new EBS storage ring.

One of Sirius’ most important steps: first electron loop around the storage ring

This is one of the most important stages of the largest scientific project in Brazil .

The Sirius project has just completed one of its most important steps: the first electron loop around its main particle accelerator, called the Storage Ring. In this large structure, 518 meters in circumference, the electrons accelerated to very high energies produce synchrotron light: a very bright light used in scientific experiments that could revolutionize knowledge in health, energy, materials and more.
The first loop demonstrates that thousands of components such as magnets, ultra-high-vacuum chambers and sensors are working in sync, and that the entire structure, with parts weighing hundreds of kilograms, have been aligned to micrometer standards (up to five times smaller than a strand of hair) needed to guide the trajectory of the particles.
Sirius is the largest and most complex scientific infrastructure ever built in Brazil and one of the first 4th generation synchrotron light source to be built in the world and it was designed to put Brazil at the forefront of this type of technology.

The next steps of the project include concluding the assembly of the first beamlines: the research stations where scientists conduct their experiments. These stations allow researchers to study the structure of virtually any organic and inorganic materials, such as proteins, viruses, rocks, plants, soil, alloys, among many others, in the atomic and molecular scale with very high resolution and speed.

>Read more on the LNLS (CNPEM) website

Picture: first loop around the storage ring.

NSLS-II celebrates its 5th anniversary

In just five years, 28 beamlines came online, over 1,800 different experiments ran, and nearly 3,000 scientists conducted research at the National Synchrotron Light Source II.

On this day five years ago, the National Synchrotron Light Source II (NSLS-II) achieved “first light”—its first successful delivery of x-ray beams. Signaling the start of operations at NSLS-II—one of the world’s most advanced synchrotron light sources—Oct. 23, 2014 marked a new era of synchrotron science.

“It is astonishing to me how much we have accomplished in just five years,” said NSLS-II Director John Hill. “Every day when I come to work, I am proud of what we have achieved through the expertise, dedication and passion that everyone here brings to NSLS-II.”

>Read more on the NSLS-II at Brookhaven Lab website

Image: An aerial view of NSLS-II. The facility is large enough to fit Yankee Stadium inside its half-mile-long ring.

 

All SQS experiment stations up and running

Three new experiment stations expand the scientific possibilities in the field of soft X-ray science.

The soft X-ray instrument for Small Quantum Systems (SQS) welcomed its first users at the end of 2018. Now, almost a year later, the SQS team and collaborators have completed their ambitious plan to install and commission all three experiment stations, each specifically designed for different types of experiments and samples, ranging from atoms and small molecules to large clusters, nanoparticles and biomolecules. We look at how the instrument has developed during the past year, how important collaboration has been for the success of SQS so far, and what lies ahead.

>Read more on the European XFEL website

Image: SQS scientist Rebecca Boll makes final adjustments on the AQS experiment station before the first users arrive at the end of 2018.
Credit: European XFEL

CLS celebrates 20th anniversary of its launch

From the discovery of an enzyme able to turn any blood into a universal donor type, to a process that creates plastic from sunshine and pollution, to identifying heat-tolerance traits in pea varieties, scientific advances achieved at the Canadian Light Source at the University of Saskatchewan (USask) are being celebrated asv the institution marks the 20th anniversary of its launch. “This unique-in-Canada research centre arose from an unprecedented level of collaboration among governments, universities, and industry in Canada, and represents the single largest investment in Canadian science,” said USask President Peter Stoicheff.  “Strongly endorsed two decades ago by many other universities across Canada and by an international scientific panel, the CLS has made possible cutting-edge research that benefits human and animal health, agriculture, advanced materials, and the environment. For USask’s research community, it has helped us be the university the world needs.”

Construction of the synchrotron facility on the USask campus began in 1999 and its official opening was held Oct. 22, 2004. Since then, thousands of scientists from across Canada and around the world have come to the CLS to run experiments that could not be done elsewhere in Canada.

>Read more on the Canadian Light Source website

Q&A with Sakura Pascarelli, new scientific director at European XFEL

European XFEL’s new scientific director talks about her career, her new role and her love for swimming.

On 1 September Sakura Pascarelli joined the European XFEL from the ESRF. In her role as scientific director she is responsible for the development of the four hard X-ray instruments. She spoke to Rosemary Wilson about her career, her new role and her love for swimming.

How did you get into science?

I spent part of my childhood in Burma and Indonesia. The American school system there enabled you to do lessons at your level, meaning you stayed interested and engaged. I really liked maths which I did with kids a few years older than me. I remember also doing experiments. I liked seeing things explode and break and try to understand why. Later on in Italy, I studied physics – not because I was particularly talented, but because I enjoyed it.

You joined ESRF at a time when the facility was still being built. What parallels can you see between that time, and now here at European XFEL?

I went to the ESRF to build one of the first beamlines there. We didn’t know what we would be able to discover or measure with this new machine. Here at European XFEL I see some of that same excitement. That opportunity taught me so much about instrumentation, and coordinating the construction of a beamline. But it is a different world now. Back then a good scientist with a solid background in physics, X-ray optics or instrumentation, could build a group and build a beamline. That is not possible here. This is so much more complicated. Here you need experts in X-rays, lasers, electronics, detectors. We don’t really know how to measure a femtosecond pulse let alone synchronise it with another laser! To run these instruments we need group leaders who are really good managers. This is so important. It is no longer enough for someone to be just a good scientist. At European XFEL we need to make sure the groups are well structured, well managed and that the people are happy. That might be difficult in the beginning when things don’t work, but when people see that their work is recognized, satisfaction and productivity increases.

>Read more on the European XFEL website

Image: European XFEL

Two years of user operation in numbers

1200 users, 60 experiments and 6 petabytes of data since operation began.

September 1 marks two years since the official opening and start of user operation at European XFEL. With the scheduled expansion from two to six operational instruments, the facility has expanded its experimental capacity and possibilities significantly during the past two years. At the same time, both the performance of the X-ray free-electron laser and instruments was continually improved. The scientific community shows strong interest in experiments at the new facility, with a total of 363 submitted proposals during this period, of which 98 were awarded beamtime. In total, 1200 users from across the world came to Schenefeld for their research. As the facility continues to be developed, even more time will be available for user experiments in the future.

>Read more on the European XFEL website

Image: Laser installation on the European XFEL campus in 2017 highlighting the five underground tunnels.
Credit: The European XFEL (Germany)

Research and tinkering – SwissFEL in 2019

The newest large research facility at the Paul Scherrer Institute, SwissFEL, has been completed. Regular operation began in January 2019.

Henrik Lemke, head of the SwissFEL Bernina research group in the Photon Science Division, gives a first interm report.

Mr. Lemke, you have just published a technical article in which you report on the experience so far with SwissFEL. How would you sum it up?

With SwissFEL, we are entering new territory at PSI. It is one of only five comparable facilities on this scale worldwide. This means we still need to gain experience, because we are doing a lot of things for the first time. On January 1 this year we began regular operation. Research groups from other institutions have already been here, and they have successfully conducted experiments with us, just like PSI researchers themselves. These were already a big success. In parallel to this operation, we are also further optimising the facility and the experimental setup. This will enable us to join ranks with the comparable facilities and, in addition, develop particular methods into specialities of SwissFEL.

>Read more on the SwissFEL website

Image: Lemke at the experiment station Bernina of SwissFEL
Credit: Paul Scherrer Institute/Mahir Dzambegovic