A guide to central nervous system tomography

In-depth investigations on I13 to optimise soft tissue synchrotron X-ray microtomography

The Bradbury Lab at King’s College London, headed by Professor Elizabeth Bradbury, investigates damage to the central nervous system (CNS), and how the body responds to it. The traditional way of investigating soft tissue samples such as those of the central nervous system is 2D histology, in which slices are taken, stained and imaged. However, this process has limitations – slice thickness has a lower limit and measurements within cut slices are subject to inaccuracies arising from mechanical processing distortions. The group sent PhD student (now Dr) Merrick Strotton to the Diamond-Manchester Imaging Branchline I13-2 to investigate whether X-ray microtomography (a nominally non-destructive technique for taking a series of 2D images and turning them into a 3D volume) could avoid these issues. It wasn’t clear how to achieve the best possible results, and so alongside the biomedical studies, Dr Strotton worked with Diamond’s Dr Andrew Bodey on a series of methodological investigations on how to optimise imaging for soft tissue samples, the first results of which have recently been published in Scientific Reports.

>Read more on the Diamond Light Source website

Image: Segmentation of the low thoracic-high lumbar (T13-L1) level spinal cord sample from background, white & grey matter from spinal cord and vasculature from spinal cord with SuRVoS.
Credit: https://www.nature.com/articles/s41598-018-30520-8#Sec10

Printing nerve scaffolds

Engineering 3D bio-printed scaffolds to help regenerate damaged peripheral nervous systems

In the last decade or so, 3D printing has experienced a surge in popularity as the technology has become more precise and accessible. Now, researchers from the University of Saskatchewan are looking at how we can use 3D printing to help damaged nervous systems to regrow.

The peripheral nervous system, which controls the body beyond the brain and the spinal cord, can be damaged by poor diet, toxins, and trauma. It can also be damaged by diseases such as diabetes, which affects about 422 million people worldwide, and 3.4 million people in Canada.

Damage to the peripheral nervous system can affect our sense of touch and our motor control. The current standard for treating large gaps in the nervous system due to damage is nerve autografts, where donor nerves from another part of the body are used to repair the damaged parts.

>Read more on the Canadian Light Source website

Image: The tiny, bio-printed scaffolds are less than a centimeter long on each side.