Understanding the physics in new metals

Researchers from the Paul Scherrer Institute PSI and the Brookhaven National Laboratory (BNL), working in an international team, have developed a new method for complex X-ray studies that will aid in better understanding so-called correlated metals. These materials could prove useful for practical applications in areas such as superconductivity, data processing, and quantum computers. Today the researchers present their work in the journal Physical Review X.

In substances such as silicon or aluminium, the mutual repulsion of electrons hardly affects the material properties. Not so with so-called correlated materials, in which the electrons interact strongly with one another. The movement of one electron in a correlated material leads to a complex and coordinated reaction of the other electrons. It is precisely such coupled processes that make these correlated materials so promising for practical applications, and at the same time so complicated to understand.

Strongly correlated materials are candidates for novel high-temperature superconductors, which can conduct electricity without loss and which are used in medicine, for example, in magnetic resonance imaging. They also could be used to build electronic components, or even quantum computers, with which data can be more efficiently processed and stored.

Read more on the BNL website

Image: Brookhaven Lab Scientist Jonathan Pelliciari now works as a beamline scientist at the National Synchrotron Light Source II (NSLS-II), where he continues to use inelastic resonant x-ray scattering to study quantum materials such as correlated metals.

Credit: Jonathan Pelliciari/BNL

Quantum beats for zeptosecond timing

A team of scientists is developing high-precision timing for quantum technologies

Quantum systems will be crucial to future technologies. However, in order to use such systems in practical applications, it is necessary to control and manipulate them with great precision. A Hamburg research team has now succeeded in controlling and measuring a quantum system with hitherto unattainable temporal precision on the PETRA III beamline P01. They managed to control and detect oscillations inside an atomic nucleus, as well as the gamma radiation emitted, to within 1.3 zeptoseconds. A zeptosecond is 0.000 000 000 000 001 seconds; the thousandth part of a billionth of a billionth of a second. The new method developed by the team makes use of the fundamental excitations that occur within a solid. Precise adjustments of this kind are important when building quantum sensors, for example, to establish extremely precise time standards or to detect minute changes. The newly developed method may also have potential applications in quantum computers or quantum communication, as a way of making specific adjustments to such systems.

Read more on the DESY website

Image: View of the experiment at the PETRA III beamline P01 (in X-ray beam direction): The sample on the round table in the centre of the picture is connected to microwave measuring tips. The X-rays emitted by the sample are analysed at the end with a detector. Electromagnets with iron yokes around the sample table generate a magnetic field at the sample location to align the magnetisation in the sample

Credit: L. Bocklage/DESY