A new approach for studying electric charge arrangements in a superconductor

X-ray scattering yields new information on “charge density waves”

High-temperature superconductors are a class of materials that can conduct electricity with almost zero resistance at temperatures that are relatively high compared to their standard counterparts, which must be chilled to nearly absolute zero—the coldest temperature possible. The high-temperature materials are exciting because they hold the possibility of revolutionizing modern life, such as by facilitating ultra-efficient energy transmission or being used to create cutting-edge quantum computers.

One particular group of high-temperature superconductors, the cuprates, has been studied for 30 years, yet scientists still cannot fully explain how they work: What goes on inside a “typical” cuprate?

Piecing together a complete picture of their electronic behavior is vital to engineering the “holy grail” of cuprates: a versatile, robust material that can superconduct at room temperature and ambient pressure.

Read more on the NSLS-II website

Image: Brookhaven Lab scientist Mark Dean used the Soft Inelastic X-Ray (SIX) beamline at the National Synchrotron Light Source II (NSLS-II) to unveil new insights about a cuperates, a particular group of high-temperature superconductors. Credit: BNL

New NSLS-II beamline illuminates electronic structures

MIT scientists conduct the first experiment at NSLS-II’s Soft Inelastic X-ray Scattering beamline.

On July 15, 2018, the Soft Inelastic X-ray Scattering (SIX) beamline at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory—welcomed its first visiting researchers. SIX is an experimental station designed to measure the electronic properties of solid materials using ultrabright x-rays. The materials can be as small as a few microns—one millionth of a meter.
The first researchers to take advantage of the world-class capabilities at SIX were Jonathan Pelliciari and Zhihai Zhu, two scientists from the Massachusetts Institute of Technology (MIT). The pair used SIX to study a chromate sample, a fascinating material with novel applications in magnetism, batteries, and catalysis. Little was known about the electronic structure of the chromate sample the MIT team studied at SIX, and their research is aimed at unlocking the properties of this material. To do so, they needed the atomic sensitivity and energy resolution of the SIX beamline.

>Read more on the NSLS-II at Brookhaven National Laboratoy website

Picture: The sample chamber of the Soft Inelastic X-ray Scattering (SIX) beamline at NSLS-II allows scientists to mount their materials on a special holder that can be turned and moved into the beam of bright x-rays.

Brookhaven Lab scientist receives Early Career Research Program Funding

Valentina Bisogni, an associate physicist at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, has been selected by DOE’s Office of Science to receive significant research funding as part of DOE’s Early Career Research Program.

The effort, now in its ninth year, is designed to bolster the nation’s scientific workforce by providing support to exceptional researchers during the crucial early career years, when many scientists do their most formative work. Bisogni is among a total of 84 recipients selected this year after a competitive review of proposals. Thirty winners come from DOE national laboratories and 54 from U.S. universities.

“Supporting talented researchers early in their career is key to building and maintaining a skilled and effective scientific workforce for the nation. By investing in the next generation of scientific researchers, we are supporting lifelong discovery science to fuel the nation’s innovation system,” said Secretary of Energy Rick Perry. “We are proud of the accomplishments these young scientists have already made, and look forward to following their achievements in years to come.”

Each researcher will receive a grant of up to $2.5 million over five years to cover their salary and research expenses. A list of the 84 awardees, their institutions, and titles of their research projects is available on DOE’s Early Career Research Program webpage.

>Read more on the NSLS-II at Brookhaven Lab website

Image: Valentina Bisogni is shown preparing samples at NSLS-II’s Soft Inelastic X-ray Scattering beamline, where she will conduct her research funded through DOE’s Early Career Research Program.