Superstore MXene: New proton hydration structure determined

MXenes are able to store large amounts of electrical energy like batteries and to charge and discharge rather quickly like a supercapacitor. They combine both talents and thus are a very interesting class of materials for energy storage. The material is structured like a kind of puff pastry, with the MXene layers separated by thin water films. A team at HZB has now investigated how protons migrate in the water films confined between the layers of the material and enable charge transport. Their results have been published in the renowned journal Nature Communications and may accelerate the optimisation of these kinds of energy storage materials.

One of the biggest challenges for a climate-neutral energy supply is the storage of electrical energy. Conventional batteries can hold large amounts of energy, but the charging and discharging processes take time. Supercapacitors, on the other hand, charge very quickly but are limited in the amount of stored energy. Only in the last few years has a new class of materials been discussed that combines the advantages of batteries with those of supercapacitors, named pseudocapacitors.

Promising materials: Pseudocapacitors

Among pseudocapacitive materials, so-called MXenes consisting of a large family of 2D transition metal carbides and nitrides appear particularly promising. Their structure resembles a puff pastry, with the individual layers separated by a thin film of water that enables the transport of charges. Titanium carbide MXenes, especially, are conductive and their layered structure combined with highly negatively-charged hydrophilic surfaces offers a unique material in which positively charged ions such as protons can diffuse very efficiently. The MXenes used in this study were synthesized in the group of Prof. Yury Gogotsi in Drexel University, USA.

Charge transport examined

Over the last years, this property has been used to store and release energy from protons at unprecedented rates in acidic environment. It remains though unclear if the charges are mostly stored based on proton adsorption at the MXene surface or through desolvation of proton in the MXene interlayer.

Confinement effect expected

Due to its two-dimensional geometry, the 2-3 layer thick water film trapped between the MXene layers is expected to solvate protons differently from bulk water that we classically know. While this confinement effect is supposed to play a role in the fast diffusion of protons inside MXene materials, it has been impossible until now to characterise protons inside a MXene electrode during charging and discharging.

Vibrational modes analysed

The team led by Dr. Tristan Petit at HZB has now succeeded in doing this for the first time by analysing vibrational modes of protons excited by infrared light. Postdoctoral researcher Dr Mailis Lounasvuori has developed an operando electrochemical cell that she used to analyse protons and water inside titanium carbide MXenes at BESSY II during the charging and discharging processes. In the process, she also succeeded in distilling out the special signature of the protons in the confined water between the MXene layers.

Read more on the HZB website

Image: The experiment: Infrared light excites protons in the water film, which move between the Ti3C2-MXene layers. Their oscillation patterns show that they behave differently than in a thicker film of water.

Credit: ¬© M. K√ľnsting /HZB

First direct measurement of elusive Donnan potential

Scientific achievement

At the Advanced Light Source (ALS), researchers performed the first direct measurement of the Donnan electrical potential, which arises from an imbalance of charges at membrane-solution interfaces.

Significance and impact

Considered unmeasurable for over a century, the Donnan potential is relevant to a wide range of fields, from cell biology to energy storage and water desalination.

A breakthrough with great potential

The Donnan electrical potential arises from an imbalance of charges at the interface of a charged membrane and a liquid, and for more than a century it stubbornly eluded direct measurement. Many researchers had even written off such a measurement as impossible. Now, using ambient-pressure x-ray photoelectrion spectroscopy (APXPS) at the ALS, scientists directly measured the Donnan potential for the first time.

The ability to probe the characteristics of this potential at membrane-solution interfaces could yield new insights in biology, energy science, and materials science. For example, the Donnan potential plays a critical role in biological functions ranging from muscle contractions to neural signaling. Energy storage and water purification using ion exchange membranes (IEMs) are also important applications involving the Donnan potential.

Read more on the ALS website

Image: Left: Schematic of the x-ray experiment. Right: The presence of fixed ions inside a membrane generates an electrochemical potential gradient (the Donnan potential) that leads to more counter-ions (with charge opposite that of the fixed ions) diffusing from the solution to the membrane relative to co-ions (which have the same charge as the fixed ions).