A highly promising sustainable battery for electric vehicles

McGill University researchers show that affordable materials could prove key for improving the batteries used in electric vehicles. The breakthrough was analyzed and confirmed with the Canadian Light Source (CLS) at the University of Saskatchewan. The research was funded by NSERC and supported by Hydro-Quebec.

As we move to greener technologies, the need for affordable, safe and powerful batteries is increasing constantly.

Battery-powered electric vehicles, for example, have much higher safety standards than our phones, and to travel the long distances required in Canada, lighter weight, high-energy capacity batteries make a world of difference.

Current rechargeable batteries tend to use expensive non-abundant metals, like cobalt, that carry an environmental and human rights toll under the poor labour conditions in mines in Africa. All are barriers to wider adoption.

The battery’s cathode, or positive electrode, is one of the best candidates for Li-ion battery improvement. “Cathodes represent 40 per cent of the cost of the batteries that we are using in our phones right now. They are absolutely crucial to improve battery performance and reduce dependency on cobalt,” says Rasool.

Read more on the Canadian Light Source website

Image : Lithium ion silicate nanocrystals coated in a conducting polymer known as PEDOT enhance battery performance even after 50 cycles, paving the way for high energy density cathodes.

Protecting chickens from heart disease

The health and welfare of broiler chickens may improve thanks to University of Saskatchewan (USask) researcher Andrew Olkowski and colleagues.

More chickens are raised worldwide than any other livestock animal, so improving their health outcomes would have a big impact.

The broiler chickens that are raised for meat were genetically selected to grow extremely fast, but they often suffer from heart diseases. Heart pump failure is a major health and welfare issue for the broiler chicken industry worldwide. Globally, economic losses associated with heart failure problems in broiler chickens amount to more than $1 billion annually.  

To understand why fast-growing broiler chickens suffer from heart problems, Olkowski and collaborators compared them with their slower-growing broiler counterparts, which have a much lower risk of heart failure, and with Leghorn chickens, which are resistant to heart failure.

Read more on the Canadian Light Source website

Image: University of Saskatchewan researcher Andrew Olkowski. 

Discovery could lead to stronger dental fillings…and less time at the dentist

An international team of researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to discover how to create stronger dental fillings. This is great news for the estimated 96 per cent of Canadians who will have to contend with at least one cavity during their adult lives.

For the first time, an international group of researchers led by Professor Owen Addison from King’s College London has been able to close a gap in the knowledge of photo-activated resin-based composites, commonly used in medical and dental applications.

In a recent paper published in Nature Communications, the team from Alberta, the United Kingdom, Norway and the United States described how they saw inside the resin matrix and gained insight into how filler particles interact with it during setting and influence the dental filling materials.

Read more on the Canadian Light Source website

Image : Prof. Owen Addison (right) with co-author Dr. Dan Romanyk, from the University of Alberta, at the MidIR beamline at the CLS, which they used for their experiment.

Human waste could help combat global food insecurity

Researchers from Cornell University’s College of Agriculture and Life Sciences and the Canadian Light Source (CLS) at the University of Saskatchewan have proven it is possible to create nitrogen-rich fertilizer by combining the solid and liquid components of human waste. The discovery, published recently in the journal Sustainable Chemistry and Engineering, has the potential to increase agriculture yields in developing countries and reduce contamination of groundwater caused by nitrogen runoff. 

Special separating toilets that were developed through the Reinvent the Toilet Challenge have helped solve long-standing sanitation problems in the slums of Nairobi, Kenya. However, the methods used to dispose of the two outputs failed to capture a key nutrient that local fields were starving for: nitrogen.

Cornell researchers Leilah Krounbi, a former PhD student, now at the Weizmann Institute in Israel, and Johannes Lehmann, senior author and professor of soil and crop sciences, wondered whether it might be possible to close the waste stream loop by recycling nitrogen from the urine, which was otherwise being lost to runoff.  While other researchers have engineered adsorbers using high-tech ingredients such as carbon nanotubes or activated carbons, Lehmann and his team wanted to know if they could do so with decidedly low-tech materials like human feces. Adsorbers are materials whose surfaces can capture and hold gas or liquids.

Read more on the Canadian Light Source website

Image: The researchers used the SGM beamline at the CLS to see how the chemistry in the nitrogen changed as it adsorbed ammonia and how well their material could make nitrogen available to plants if it was used as a fertilizer.  

Developing microbeam radiation therapy for inoperable cancer

An innovative radiation treatment that could one day be a valuable addition to conventional radiation therapy for inoperable brain and spinal tumors is a step closer, thanks to new research led by University of Saskatchewan (USask) researchers at the Canadian Light Source (CLS).

Microbeam radiation therapy (MRT) uses very high dose, synchrotron-generated X-ray beams—narrower than a human hair—to blast tumours with radiation while sparing healthy tissue. The idea is that MRT would deliver an additional dose of radiation to a tumor after maximum conventional radiation therapy has been tried, thereby providing patients with another treatment that could extend their lives. 

But the longstanding questions have been: What is the optimal X-ray energy range of the MRT radiation dose that will both penetrate the thickness of the human body and still spare the healthy cells? How can the extremely high radiation doses be delivered and measured with the accuracy necessary for human treatment?

Read more on the Canadian Light Source website

Image : Farley Chicilo at the Canadian Light Source.

Preventing hospital-acquired pneumonia

Researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to identify a previously unrecognized family of enzymes that put us at risk for deadly diseases.

Klebsiella pneumoniae is responsible for a variety of hospital-acquired infections such as pneumonia and sepsis. The bacterium has become increasingly resistant to antibiotics, making it a focus of interest for health care professionals and researchers.

>Read more on the Canadian Light Source website

Image: Chris Whitfield has been working on polysaccharides like LPS throughout his career.

Visualising the bionanomachines that create potent antibiotics

… and other modern drugs.

Researchers from McGill University and Yale University used the Canadian Light Source (CLS) at the University of Saskatchewan to make a discovery that could help design future therapeutic drugs. The research team studied how mega-enzymes, known as nonribosomal peptide synthetases (NRPSs), create potent antibiotics, immunosuppressants and other modern drugs.

In a paper featured on the cover of the May 2020 issue of Nature Chemical Biology, the team reports how they were able to visualize an NRPSs’ mechanical system using the CMCF beamline at the CLS.

>Read more on the Canadian Light Source website

Image: Associate Professor Schmeing in the lab

Mapping metals in feathers

Synchrotron technique promising for tracing metals in nature

University of Saskatchewan (USask) and Environment and Climate Change Canada (ECCC)  researchers have mapped metals in bird feathers, a technique that could help make environmental monitoring less destructive.

In a recent paper published in X-ray Spectrometry, researchers used the Canadian Light Source (CLS) synchrotron at USask to examine the level and distribution of zinc in feathers from birds that were fed high-zinc diets.

“The same technique could be applied to toxic metals like mercury, even at low concentrations,” says Agriculture and Agri-Food Canada scientist Fardausi Akhter. “You could just take a feather from the bird and be able to show if it was exposed to toxic metals present in the environment.”

Akhter, a toxicologist interested in applying synchrotron techniques to environmental questions, first started working on this project with Graham Fairhurst, a USask avian ecophysiologist, when they were both working as postdocs supervised by Catherine Soos. Soos is a wildlife health specialist and research scientist at ECCC, and adjunct professor at USask (Department of Veterinary Pathology, Western College of Veterinary Medicine), whose research focuses on investigating impacts of large-scale environmental changes on wildlife health. Her team often uses feathers as tools to evaluate exposure to toxic metals, and impacts of exposure on health of wild birds.  

>Read more on the Canadian Light Source website

Image: Part of the research team at CLS (left to right): Fardausi (Shathi) Akhter, Jamille McLeod (ECCC), Bruce Pauli (ECCC), Peter Blanchard (CLS), Landon McPhee (ECCC), and Catherine Soos (ECCC)

Helping to protect California farms from drought

Researchers used the Canadian Light Source (CLS) at the University of Saskatchewan to look at where carbon ends up in soil and are contributing to an effort to mitigate the effects of drought for California farmers.

Samantha Ying and Michael Schaefer, both from the Department of Environmental Sciences at University of California (UC) Riverside, are part of a team set on untangling the mystery of a practice upon which farmers have relied for centuries to reduce water use—cover crops. Cover crops are an ancient practice whereby a crop is planted for the sole purpose of fertilizing the soil, not for consumption. It is known that increased organic carbon in soil resulting from the use of cover crops “turns the soil into a sponge that holds water,” explained Ying. “But how does this work? We really don’t know what’s happening to the carbon and soil.”

>Read more on the Canadian Light Source website

Image: Researcher Samantha Ying loading samples at our SGM beamline.

Helping to grow more food in Africa

University of Saskatchewan scientists help farmers in West Africa improve crops.

Derek Peak and Abimfoluwa Olaleye are using Canadian Light Source at the University of Saskatchewan (Usask) to help farmers in Nigeria and the Republic of Benin to grow vegetables less expensively and more sustainably. The USask researchers and their team recently published a paper in Soil Systems that explores the effects of an innovative farming practice, fertilizer microdosing, on two vegetable systems in both countries.

“The overall idea was to scale up good, innovative ideas to solve food security problems in the regions,” says Peak. “We combine agricultural studies out in the field with socio-economic studies and development work.” Olaleye’s interest in the project is both scientific and personal. “Anything agriculture always gets my interest, it’s something I’m passionate about. And helping people is a big bonus. My dad was a farmer back in Nigeria, so I picked up on that,” he says.

>Read more on the Canadian Light Source website

Image: Abimfoluwa Olaleye (right) and Taylor Procyshen, a graduate student who helped with the project, working in the laboratory together.

Discovery shows men and women develop heart disease differently

Scientists from McGill University used the Canadian Light Source (CLS) at the University of Saskatchewan to uncover that different minerals block heart valves in men versus women. This discovery could impact how heart disease is diagnosed and treated for the different sexes. Heart disease is the leading cause of death throughout the world. Marta Cerruti, an Associate Professor with McGill University, and her team used the CMCF beamline at the CLS to analyze damaged heart valves from patients who needed transplants.

“What we showed, which was a surprise to us, is that the type of minerals in the heart valves is different between the sexes,” said Cerruti. The beamline allowed them to see that the buildup of minerals in the heart, and its progression to a more bone-like state, is slower in women than in men. There was also a type of mineral found almost exclusively in the female samples. “That finding was completely new, we did not expect it at all. There is no other technique that could have showed us this difference in mineral phase.”

The team hopes this finding could help to develop better diagnostics and therapies.

>Read more on the Canadian Light Source website

Image: Ophélie Gourgas, lead author of this research paper, holds a sample that was analyzed at the CLS in the study of vascular calcification that leads to what’s commonly called “the hardening of the arteries.”

Enhanced tandem solar cells set new standard in converting light into electricity

A collaboration between U of T Engineering and King Abdullah University of Science and Technology has created two-layered solar cells that successfully combine traditional silicon with new perovskite technology .

Researchers from University of Toronto Engineering and King Abdullah University of Science and Technology (KAUST) have overcome a key obstacle in combining the emerging solar-harvesting technology of perovskites with the commercial gold standard — silicon solar cells. The result is a highly efficient and stable tandem solar cell, one of the best-performing reported to date.
“Today, silicon solar cells are more efficient and less costly than ever before,” says Professor Ted Sargent (ECE), senior author on a new paper published today in Science. “But there are limits to how efficient silicon can be on its own. We’re focused on overcoming these limits using a tandem (two-layer) approach.”

>Read more on the Canadian Light Source website

Picture: Left to right: Postdoctoral fellows Erkan Aydin (KAUST), Yi Hou (University of Toronto) and Michele De Bastiani (KAUST) are part of an international team that has designed a new type of tandem solar cell. The device combines industry standard silicon manufacturing with new perovskite technology.
Credit: Andrea Bachofen-Echt / KAUST

Diabetes discovery challenges known research

Yale University scientists and colleagues who used the CLS share findings that could lead to a new therapeutic approach to treating diabetes.

A discovery by an international group of scientists challenges known research on diabetes and may open the door to new therapeutic approaches for the disease that affects nearly 500 million people globally.
Their research focused on pyruvate kinase, an enzyme that is involved in communication at the cell level through a process known as protein phosphorylation, which changes the shape of a protein and alters how that protein behaves.
The study is a piece of a larger project that has researchers looking at how different signals, like insulin levels, are interpreted in the liver.
“We set out to understand and characterize insulin signalling in a laboratory model, and we found some activities in that model that were contrary to the textbooks,” said Jesse Rinehart, associate professor in the Department of Cellular & Molecular Physiology at the Yale University School of Medicine.
The team’s findings were published in Cell Reports and have opened up a new area of insight and exploration in an already highly active field of research.

>Read more on the Canadian Light Source website

Image: Gassaway et al. identified a phosphorylation site on pyruvate kinase linking it to cyclin dependent kinase (CDK) function in the liver. This new site is part of a CDK pathway stimulated by insulin resistance in vivo. Structural and biochemical characterization reveled that pyruvate kinase phosphorylation does not alter enzymatic activity. Instead phosphorylation dictates cellular compartmentalization. This image depicts the “hand” of CDK reaching out to sequester PKL in the hepatocyte nucleus.
Credit: J. Rinehart and B. Gassaway.

Growing an international community for agricultural synchrotron research

Dr. Chithra Karunakaran’s passion for agriculture has taken her around the world and helped her to grow an international agricultural imaging research community from Saskatoon. 

Given that the Canadian Light Source (CLS) is situated on the University of Saskatchewan (USask) campus, renowned for agriculture, and surrounded by some of the finest farm land in the country, it’s little wonder it has developed a reputation for outstanding agriculture-related research. Location is only part of the story though; some credit has to go to an engineer determined to apply advanced synchrotron techniques to the study of what we grow and what we eat.

The view from Agriculture Science Manager Dr. Chithra Karunakaran’s office window is dominated by the USask College of Agriculture and Bioresources, which also owns the research greenhouse located across the street from the CLS. Both are part of what she termed “the right ecosystem” needed to expand ag research at the facility, a project she has devoted herself to since she arrived in Saskatoon. The key has been adapting beamline techniques to serve the needs of plant, soil and food scientists.

>Read more on the Canadian Light Source website

Image: Karunakaran working with synchrotron science equipment. 

Educational science project: what trees tell about your community

Grade 6 to 12 classrooms from across Canada can participate for free.

The Canadian Light Source (CLS) at the University of Saskatchewan has launched a unique initiative that creates opportunities for school students across the country to be directly involved in a national research project: children across Canada can participate in a free, nation-wide science project to learn the secrets trees can tell about their communities.

The Trans-Canadian Research and Environmental Education (TREE) program involves the Canadian Light Source (CLS) and the Mistik Askiwin Dendrochronology Laboratory (MAD Lab), both located at the University of Saskatchewan (USask), in a study of how the environment affects trembling aspen trees. By combining CLS techniques for chemical analysis and MAD Lab expertise in the science of tree rings, TREE aims to paint a detailed picture of how trembling aspen are doing in communities throughout Canada.

>Read more on the Canadian Light Source website

Image: Tracy Walker (right) helps students to use the IDEAS beamline at the CLS.

Rare dinosaur skin offers insights into evolution

International team of scientists finds rare piece of preserved dinosaur skin and, in a world first, compares it directly to modern animals to gain insight into evolution.

Mauricio Barbi has loved dinosaurs for as long as he can remember and dreamed of one day being a paleontologist. “When I was a kid, I loved space, stars, and dinosaurs,” he said.
Fast-forward a few years, and Barbi is trekking through the Alberta Badlands alongside famous paleontologist Philip Currie, whose professional life became the inspiration for characters in the Jurassic Park movies. During this fieldwork, he also met paleontologist and rising star, Phil Bell, who had recently found a well-preserved hadrosaur. When he joined Bell in the excavations, Barbi was shocked and thrilled by what they discovered.

>Read more on the Canadian Light Source website

Picture of the dig site.