Discovery shows men and women develop heart disease differently

Scientists from McGill University used the Canadian Light Source (CLS) at the University of Saskatchewan to uncover that different minerals block heart valves in men versus women. This discovery could impact how heart disease is diagnosed and treated for the different sexes. Heart disease is the leading cause of death throughout the world. Marta Cerruti, an Associate Professor with McGill University, and her team used the CMCF beamline at the CLS to analyze damaged heart valves from patients who needed transplants.

“What we showed, which was a surprise to us, is that the type of minerals in the heart valves is different between the sexes,” said Cerruti. The beamline allowed them to see that the buildup of minerals in the heart, and its progression to a more bone-like state, is slower in women than in men. There was also a type of mineral found almost exclusively in the female samples. “That finding was completely new, we did not expect it at all. There is no other technique that could have showed us this difference in mineral phase.”

The team hopes this finding could help to develop better diagnostics and therapies.

>Read more on the Canadian Light Source website

Image: Ophélie Gourgas, lead author of this research paper, holds a sample that was analyzed at the CLS in the study of vascular calcification that leads to what’s commonly called “the hardening of the arteries.”

Enhanced tandem solar cells set new standard in converting light into electricity

A collaboration between U of T Engineering and King Abdullah University of Science and Technology has created two-layered solar cells that successfully combine traditional silicon with new perovskite technology .

Researchers from University of Toronto Engineering and King Abdullah University of Science and Technology (KAUST) have overcome a key obstacle in combining the emerging solar-harvesting technology of perovskites with the commercial gold standard — silicon solar cells. The result is a highly efficient and stable tandem solar cell, one of the best-performing reported to date.
“Today, silicon solar cells are more efficient and less costly than ever before,” says Professor Ted Sargent (ECE), senior author on a new paper published today in Science. “But there are limits to how efficient silicon can be on its own. We’re focused on overcoming these limits using a tandem (two-layer) approach.”

>Read more on the Canadian Light Source website

Picture: Left to right: Postdoctoral fellows Erkan Aydin (KAUST), Yi Hou (University of Toronto) and Michele De Bastiani (KAUST) are part of an international team that has designed a new type of tandem solar cell. The device combines industry standard silicon manufacturing with new perovskite technology.
Credit: Andrea Bachofen-Echt / KAUST

Diabetes discovery challenges known research

Yale University scientists and colleagues who used the CLS share findings that could lead to a new therapeutic approach to treating diabetes.

A discovery by an international group of scientists challenges known research on diabetes and may open the door to new therapeutic approaches for the disease that affects nearly 500 million people globally.
Their research focused on pyruvate kinase, an enzyme that is involved in communication at the cell level through a process known as protein phosphorylation, which changes the shape of a protein and alters how that protein behaves.
The study is a piece of a larger project that has researchers looking at how different signals, like insulin levels, are interpreted in the liver.
“We set out to understand and characterize insulin signalling in a laboratory model, and we found some activities in that model that were contrary to the textbooks,” said Jesse Rinehart, associate professor in the Department of Cellular & Molecular Physiology at the Yale University School of Medicine.
The team’s findings were published in Cell Reports and have opened up a new area of insight and exploration in an already highly active field of research.

>Read more on the Canadian Light Source website

Image: Gassaway et al. identified a phosphorylation site on pyruvate kinase linking it to cyclin dependent kinase (CDK) function in the liver. This new site is part of a CDK pathway stimulated by insulin resistance in vivo. Structural and biochemical characterization reveled that pyruvate kinase phosphorylation does not alter enzymatic activity. Instead phosphorylation dictates cellular compartmentalization. This image depicts the “hand” of CDK reaching out to sequester PKL in the hepatocyte nucleus.
Credit: J. Rinehart and B. Gassaway.

Growing an international community for agricultural synchrotron research

Dr. Chithra Karunakaran’s passion for agriculture has taken her around the world and helped her to grow an international agricultural imaging research community from Saskatoon. 

Given that the Canadian Light Source (CLS) is situated on the University of Saskatchewan (USask) campus, renowned for agriculture, and surrounded by some of the finest farm land in the country, it’s little wonder it has developed a reputation for outstanding agriculture-related research. Location is only part of the story though; some credit has to go to an engineer determined to apply advanced synchrotron techniques to the study of what we grow and what we eat.

The view from Agriculture Science Manager Dr. Chithra Karunakaran’s office window is dominated by the USask College of Agriculture and Bioresources, which also owns the research greenhouse located across the street from the CLS. Both are part of what she termed “the right ecosystem” needed to expand ag research at the facility, a project she has devoted herself to since she arrived in Saskatoon. The key has been adapting beamline techniques to serve the needs of plant, soil and food scientists.

>Read more on the Canadian Light Source website

Image: Karunakaran working with synchrotron science equipment. 

Educational science project: what trees tell about your community

Grade 6 to 12 classrooms from across Canada can participate for free.

The Canadian Light Source (CLS) at the University of Saskatchewan has launched a unique initiative that creates opportunities for school students across the country to be directly involved in a national research project: children across Canada can participate in a free, nation-wide science project to learn the secrets trees can tell about their communities.

The Trans-Canadian Research and Environmental Education (TREE) program involves the Canadian Light Source (CLS) and the Mistik Askiwin Dendrochronology Laboratory (MAD Lab), both located at the University of Saskatchewan (USask), in a study of how the environment affects trembling aspen trees. By combining CLS techniques for chemical analysis and MAD Lab expertise in the science of tree rings, TREE aims to paint a detailed picture of how trembling aspen are doing in communities throughout Canada.

>Read more on the Canadian Light Source website

Image: Tracy Walker (right) helps students to use the IDEAS beamline at the CLS.

Rare dinosaur skin offers insights into evolution

International team of scientists finds rare piece of preserved dinosaur skin and, in a world first, compares it directly to modern animals to gain insight into evolution.

Mauricio Barbi has loved dinosaurs for as long as he can remember and dreamed of one day being a paleontologist. “When I was a kid, I loved space, stars, and dinosaurs,” he said.
Fast-forward a few years, and Barbi is trekking through the Alberta Badlands alongside famous paleontologist Philip Currie, whose professional life became the inspiration for characters in the Jurassic Park movies. During this fieldwork, he also met paleontologist and rising star, Phil Bell, who had recently found a well-preserved hadrosaur. When he joined Bell in the excavations, Barbi was shocked and thrilled by what they discovered.

>Read more on the Canadian Light Source website

Picture of the dig site.

Canadian researchers extend the life of rechargeable batteries

Carbon coating that extends lithium ion battery capacity by 50% could pave the way for next-generation batteries in electric vehicles.

Researchers from Western University, using the Canadian Light Source (CLS) at the University of Saskatchewan, found that adding a carbon-based layer to lithium-ion rechargeable batteries extends their life up to 50%.
The finding, recently published in the journal ACS Applied Materials and Interfaces, tackles a problem many Canadians will be familiar with: rechargeable batteries gradually hold less charge over time.
“We added a thin layer of carbon coating to the aluminum foil that conducts electric current in rechargeable batteries,” said lead researcher Dr. Xia Li of Western University. “It was a small change, but we found the carbon coating protected the aluminum foil from corrosion of electrolyte in both high voltage and high energy environments – boosting the battery capacities up to 50% more than batteries without the carbon coating.”

>Read more on the Canadian Light Source website

Image: Dr. Li in the lab. 

Developing more nutritious crops to feed a growing world

Using synchrotron light to analyze new varieties of peas could be faster, more environmentally friendly, and help to nourish underfed populations around the world.

With thousands of seed samples produced every growing season, Dr. Tom Warkentin needs fast, accurate and cost-effective techniques to assess the nutritional value of the pea varieties he has developed. Now, thanks to two recent studies, techniques available at the Canadian Light Source (CLS) synchrotron at the University of Saskatchewan show promise for Warkentin and many other plant breeders.

“These studies arose from the question, ‘Can we use the synchrotron to measure the nutrient traits in pea seeds?,’” explained Warkentin, professor of plant science and pulse breeder in the Crop Development Centre at the University of Saskatchewan’s College of Agriculture and Bioresources. “Improving the nutritional value of peas is a higher and higher priority for us in plant breeding so we wanted to look at the standard approaches we’ve been using to measure nutritional traits versus the techniques available at the CLS.”

>Read more on the Canadian Light Source website

Image: Scientists Tom Warkentin, Chithra Karunakaran, Jarvis Stobbs, and David Muir with pea samples at our IDEAS beamline.

CLS celebrates 20th anniversary of its launch

From the discovery of an enzyme able to turn any blood into a universal donor type, to a process that creates plastic from sunshine and pollution, to identifying heat-tolerance traits in pea varieties, scientific advances achieved at the Canadian Light Source at the University of Saskatchewan (USask) are being celebrated asv the institution marks the 20th anniversary of its launch. “This unique-in-Canada research centre arose from an unprecedented level of collaboration among governments, universities, and industry in Canada, and represents the single largest investment in Canadian science,” said USask President Peter Stoicheff.  “Strongly endorsed two decades ago by many other universities across Canada and by an international scientific panel, the CLS has made possible cutting-edge research that benefits human and animal health, agriculture, advanced materials, and the environment. For USask’s research community, it has helped us be the university the world needs.”

Construction of the synchrotron facility on the USask campus began in 1999 and its official opening was held Oct. 22, 2004. Since then, thousands of scientists from across Canada and around the world have come to the CLS to run experiments that could not be done elsewhere in Canada.

>Read more on the Canadian Light Source website

Using soil to combat climate change

Researchers are using synchrotron light to better understand the impact of climate change on more than three trillion metric tonnes of soil carbon around the world.

Using the Canadian Light Source (CLS) at the University of Saskatchewan, scientists from across the United States investigated the plant root mechanisms that control long-term storage of carbon in deep soil. Their findings will have ramifications for global industries such as agriculture, which have touted the benefits of carbon sequestration as their contribution to fighting climate change.

“The significance of our work is we not only show that plants are conduits of carbon into the soil, but the roots also regulate how much carbon the deep soil can store or lose,” said Dr. Marco Keiluweit, a biogeochemist at the Stockbridge School of Agriculture in the University of Massachusetts.

>Read more on the Canadian Light Source website

Image: Rhizogenic weathering extract; (full image here)

Analyzing poppies to make better drugs

A team of researchers from the University of Calgary has uncovered new information about a class of plant enzymes that could have implications for the pharmaceutical industry. In a paper published in the Journal of Biological Chemistry, the scientists explain how they revealed molecular details of an enzyme class that is central to the synthesis of many widely used pharmaceuticals, including the painkillers codeine and morphine.  

The team used the Canadian Light Source at the University of Saskatchewan and the SLAC National Accelerator Laboratory to better understand how the enzyme behaves, which is crucial for unleashing its potential to make novel medicines. “Until this study, we didn’t know the key structural details of the enzyme. We learned from the structure of the enzyme bound to the product how the methylation reaction locks the product into a certain stereochemistry. It was completely unknown how the enzyme did that before we determined this structure,” corresponding author Dr. Kenneth Ng explained.

Stereochemistry is an important concept when it comes to safety and efficacy in drug design. A molecule can have a few different arrangements—similar to how your left hand is a mirror image of your right hand. These arrangements can lead to very different effects.

>Read more on the Canadian Light Source website

Image: group photo of some of the researchers involved with this project. From left to right: Ken Ng (Professor and corresponding author), Jeremy Morris (PhD graduate and second author), Dean Lang (PhD student and first author), and Peter Facchini (Professor, CSO of Willow Biosciences and senior author).

A new generation of anti-malaria drugs


Malaria is endemic to large areas of Africa, Asia and South America and annually kills more than 400,000 people, a majority of whom are children under age 5, with hundreds of millions of new infections every year. Although artemisinin-based drug combinations are available to treat malaria, reports from Southeast Asia of treatment failures are raising concerns about drug resistance spreading to Africa. Fortunately, there is hope on the horizon because there are several new antimalarial drug candidates undergoing clinical testing as well as other promising drug targets that are under investigation.
An international research team has for the first time determined the atomic structure of a protein kinase called PKG in Plasmodium parasites that cause malaria—a finding that potentially will help create a new generation of anti-malarial drugs and advance fundamental research. PKG[i] plays essential roles in the developmental stages of the parasite’s complex life cycle, so understanding its structure is key to developing malaria-fighting therapies that specifically target PKG and not other human enzymes, according to researcher Dr. Charles Calmettes.

>Read more on the Canadian Light Source website

Image: PKG crystal.

Analyzing the world’s oldest woddy plant fossil

Scientists investigate the early evolution of tissue systems in plants.

Mapping the evolution of life on Earth requires a detailed understanding of the fossil record, and scientists are using synchrotron-based technologies to look back—way, way back—at the cell structure and chemistry of the earliest known woody plant. Dr. Christine Strullu-Derrien and colleagues used the Canadian Light Source’s SM[1] beamline at the University of Saskatchewan to study Armoricaphyton chateaupannense, an extinct woody plant that is about 400 million years old. Their research focused on lignin, an organic compound in the plant tracheids, elongated cells that help transport water and mineral salts. Lignin makes the cells walls rigid and less water permeable, thereby improving the conductivity of their vascular system.
Strullu-Derrien, a scientific associate at the Natural History Museum in London, England and the Natural History Museum in Paris, France, had described A. chateaupannense some years ago and returned to it for this project.
“Studies have been done previously on Devonian plants but they were not woody,” she said. “A. chateaupannense is the earliest known woody plant and it’s preserved in both 2D form as flat carbonaceous films and 3D organo-mineral structures. This allows for comparison to be done between the two types of preservation,” she said.
Although the fossils used in the study were collected in the Armorican Massif, a geologically significant region of hills and flatlands in western France, Strullu-Derrien said early Devonian woody plants have also been found in New Brunswick and the Gaspé area in Quebec “although these are 10 million years younger than the French one.”

>Read more on the Canadian Light Source website

Image: A, photograph of Armoricaphyton chateaupannense preserved in 2D as carbonaceous thin films. B, SEM image of a transverse section of an axis of a specimen of A. chateaupannense preserved in 3D showing the radially aligned tracheids.

The future of fighting infections

Scientists analyze 3D model of proteins from disease-causing bacteria at the CLS.

Millions of people are affected by the Streptococcus pneumoniae bacterium, which can cause sinus infections, middle ear infections and more serious life-threatening diseases, like pneumonia, bacteremia, and meningitis. Up to forty percent of the population are carriers of this bacterium.
Researchers from the University of Victoria (UVic) used the Canadian Light Source (CLS) at the University of Saskatchewan to study proteins that the pathogen uses to break down sugar chains (glycans) present in human tissue during infections. These proteins are key tools the bacterium uses to cause disease.

They used the Canadian Macromolecular Crystallography Facility (CMCF) at the CLS to determine the three-dimensional structure of a specific protein, an enzyme, that the bacterium produces to figure out how it interacts with and breaks down glycans.

>Read more on the Canadian Light Source website

Image: The 3D structure of an enzyme from the disease-causing bacterium Streptococcus pneumoniae.

Preventing heart attacks

Scientists have taken an important step towards finding a potential cure for the disease that causes strokes and heart attacks in seniors and increases the mortality rate of diabetic and chronic kidney disease patients.
Researchers from the University of McGill and SickKids Toronto in collaboration with Universite de Montreal developed a simplified laboratory model that mimics the formation of mineral deposits that harden arteries and leads to these devastating conditions.
They used the Canadian Light Source (CLS) at the University of Saskatchewan to understand the type of minerals that formed and how they develop on the arteries.
“The goal in developing our lab model is that it would help us understand the mineralization process. We can then mimic what happens, and use it to test hypotheses on why the minerals are forming and also test some drugs to find something that can stop it,” said lead researcher Dr. Marta Cerruti.
Her six-member team is focused on the poorly understood process of how minerals form and grow on elastin, a protein on artery walls that provides the elasticity needed for blood flow to the heart, said Cerruti, an associate professor in Materials Engineering at McGill.
The hypothesis is that calcium phosphate-containing minerals form inside the walls of arteries and then calcify into a bone-like substance that narrows arteries and causes them to lose elasticity crucial for blood flow.

>Read more on the Canadian Light Source website

Image: Marta Cerruti (left) and Ophelie Gourgas in a laboratory using a Raman machine.

Using reed waste for sustainable batteries

With the changing climate, researchers are focusing on finding sustainable alternatives to conventional fuel cells and battery designs. Traditional catalysts used in vehicles contribute to increasing carbon dioxide emissions and mining for materials used in their design has a negative impact on the environment. Prof. Shuhui Sun, a researcher from the Institut National de la Recherche Scientifique (INRS) in Montreal, and his team used the Canadian Light Source (CLS) at the University of Saskatchewan to investigate an Iron-Nitrogen-Carbon catalyst using reed waste.

They hope to use the bio-based materials to create high-performance fuel cells and metal-air batteries, which could be used in electric cars. “An efficient oxygen electrocatalyst is extremely important for the development of high-performance electrochemical energy conversion and storage devices. Currently, the rare and expensive Pt-based catalysts are commonly used in these devices. Therefore, developing highly efficient and low-cost non-precious metal (e.g., Fe-based) catalysts to facilitate a sluggish cathodic oxygen reduction reaction (ORR) is a key issue for metal air batteries and fuel cells,” said Qilang Wei, the first author of the paper.

>Read more on the Canadian Light Source website