Analysis of fingermarks with synchrotron techniques provide new insights

A new study by researchers from Curtin University using the infrared (IR) and X-ray fluorescence microscopy (XFM) beamlines at the Australian Synchrotron has provided a better understanding of the chemical and elemental composition of latent fingermarks.

The findings by lead researchers Prof Simon Lewis and Dr Mark Hackett may provide opportunities to optimise current fingermark detection methods or identify new detection strategies for forensic purposes.
Latent fingermarks are generally described as those requiring some process to make them readily visible to the eye. These fingermarks are typically made up of natural skin secretions, along with contaminants (such as food or cosmetics) picked up from various surfaces.
The detection of latent fingermarks is often crucial in forensic investigations, but this is not always a straightforward task. “We know that there are issues in detecting fingermarks as they get older, and also under certain environmental conditions”, said Lewis, whose main research focus is forensic exchange evidence.

“In order to improve our ability to detect fingermarks, we need to understand the nature of fingermark residue, and this includes both the organic and inorganic components. Many chemical components in fingermark residue are present at very low levels, and we don’t know how they are distributed within the fingermark. This is what took us to the Australian Synchrotron.”

>Read more on the Australian Synchrotron at ANSTO website

Combining X-ray techniques for powerful insights into hyperaccumulator plants

The complementary power of combining multiple X-ray techniques to understand the unusual properties of hyperaccumulator plants has been highlighted in a new cover article just published in New Phytologist.

X-ray fluorescence microscopy (XFM) at the Australian Synchrotron has been used by a consortium of international researchers led by Dr Antony van der Ent of the Centre for Mined Land Rehabilitation at The University of Queensland, in association with A/Prof Peter Kopittke of the School of Agriculture and Food Science also at The University of Queensland.

The XFM technique generates elemental maps showing where elements of interest are found within plant tissue, seedlings or individual cells.
Visually striking images (obtained at the XFM beamline) show various hyperaccumulator plants, on the cover of the April issue of New Phytologist. In the images each element is depicted in a different colour, making up a red-green-blue (RGB) image.

“Hyperaccumulator plants have the unusual ability to accumulate extreme concentrations of metals and metalloids in their living tissues,” said van der Ent.
“Hyperaccumulators are of scientific interest because whilst metals are normally toxic to plants even at low concentrations, these plants are able to accumulate large concentrations without any toxic effects,” he added

>Read more on the Autralian Synchrotron website

Image: X‐ray Fluorescence (XRF) elemental maps of hyperaccumulator plants. The tricolour composite images show (left to right) root cross‐section of Senecio coronatus (red, iron; green, nickel; blue, potassium); and seedlings of Alyssum murale (red, calcium; green, nickel; blue, Compton scatter).
Credit: A. van der Ent.