The early bird got to fly: Archaeopteryx was an active flyer

Was Archaeopteryx capable of flying, and if so, how?

The question of whether the Late Jurassic dino-bird Archaeopteryx was an elaborately feathered ground dweller, a glider, or an active flyer has fascinated palaeontologists for decades. Valuable new information obtained with state-of-the-art synchrotron microtomography at the ESRF, the European Synchrotron (Grenoble, France), allowed an international team of scientists to answer this question in Nature Communications. The wing bones of Archaeopteryx were shaped for incidental active flight, but not for the advanced style of flying mastered by today’s birds.

Was Archaeopteryx capable of flying, and if so, how? Although it is common knowledge that modern-day birds descended from extinct dinosaurs, many questions on their early evolution and the development of avian flight remain unanswered. Traditional research methods have thus far been unable to answer the question whether Archaeopteryx flew or not. Using synchrotron microtomography at the ESRF’s beamline ID19 to probe inside Archaeopteryx fossils, an international team of scientists from the ESRF, Palacký University, Czech Republic, CNRS and Sorbonne University, France, Uppsala University, Sweden, and Bürgermeister-Müller-Museum Solnhofen, Germany, shed new light on this earliest of birds.

>Read more on the European Synchrotron website

Image: The Munich specimen of the transitional bird Archaeopteryx. It preserves a partial skull (top left), shoulder girdle and both wings slightly raised up (most left to center left), the ribcage (center), and the pelvic girdle and both legs in a “cycling” posture (right); all connected by the vertebral column from the neck (top left, under the skull) to the tip of the tail (most right). Imprints of its wing feathers are visible radiating from below the shoulder and vague imprints of the tail plumage can be recognised extending from the tip of the tail.
Credits: ESRF/Pascal Goetgheluck

Synchrotron sheds light on the amphibious lifestyle of a new raptorial dinosaur

An exceptionally well-preserved dinosaur skeleton from Mongolia at ESRF.

The skeleton unites an unexpected combination of features that defines a new group of semi-aquatic predators related to Velociraptor. Detailed 3D synchrotron analysis allowed an international team of researchers to present the bizarre 75 million-year-old predator, named Halszkaraptor escuilliei, in Nature.

The study not only describes a new genus and species of bird-like dinosaur that lived during the Campanian stage of the Cretaceous in Mongolia but also sheds light on an unexpected amphibious lifestyle for raptorial dinosaurs.

>Read more on the ESRF website

Image: The team of scientists at ESRF’s BM05 beamline during the set up of Halszkaraptor escuilliei fossil. From left to right: Pascal Godefroit, Vincent Beyrand, Dennis Voeten, Paul Tafforeau, Vincent Fernandez, Andrea Cau.
Credit: ESRF/P.Jayet