Synchrotron X-ray sheds light on some of the world’s oldest dinosaur eggs

An international team of scientists led by the University of the Witwatersrand (South Africa), has been able to reconstruct the skulls of some of the world’s oldest known dinosaur embryos in 3D at the ESRF.

They found that the skulls develop in the same order as those of today’s crocodiles and chickens. The findings are published today in Scientific Reports.
University of the Witwatersrand scientists publish 3D reconstructions of the ~2cm-long skulls of some of the world’s oldest dinosaur embryos in an article in Scientific Reports. The embryos, found in 1976 in Golden Gate Highlands National Park (Free State Province, South Africa) belong to South Africa’s iconic dinosaur Massospondylus carinatus, a 5-meter long herbivore that nested in the Free State region 200 million years ago.

The scientific usefulness of the embryos was previously limited by their extremely fragile nature and tiny size. In 2015, scientists Kimi Chapelle and Jonah Choiniere, from the University of Witwatersrand, brought them to the European Synchrotron (ESRF) in Grenoble, France for scanning. At the ESRF, an 844 metre-ring of electrons travelling at the speed of light emits high-powered X-ray beams that can be used to non-destructively scan matter, including fossils. The embryos were scanned at an unprecedented level of detail – at the resolution of an individual bone cell.

>Read more on the ESRF website

Image: Watercolour painting of the Massospondylus carinatus embryos at 17% through the incubation period, 60% through the incubation period and 100% through the incubation period.
Artwork: Mélanie Saratori.

Rare dinosaur skin offers insights into evolution

International team of scientists finds rare piece of preserved dinosaur skin and, in a world first, compares it directly to modern animals to gain insight into evolution.

Mauricio Barbi has loved dinosaurs for as long as he can remember and dreamed of one day being a paleontologist. “When I was a kid, I loved space, stars, and dinosaurs,” he said.
Fast-forward a few years, and Barbi is trekking through the Alberta Badlands alongside famous paleontologist Philip Currie, whose professional life became the inspiration for characters in the Jurassic Park movies. During this fieldwork, he also met paleontologist and rising star, Phil Bell, who had recently found a well-preserved hadrosaur. When he joined Bell in the excavations, Barbi was shocked and thrilled by what they discovered.

>Read more on the Canadian Light Source website

Picture of the dig site.

The early bird got to fly: Archaeopteryx was an active flyer

Was Archaeopteryx capable of flying, and if so, how?

The question of whether the Late Jurassic dino-bird Archaeopteryx was an elaborately feathered ground dweller, a glider, or an active flyer has fascinated palaeontologists for decades. Valuable new information obtained with state-of-the-art synchrotron microtomography at the ESRF, the European Synchrotron (Grenoble, France), allowed an international team of scientists to answer this question in Nature Communications. The wing bones of Archaeopteryx were shaped for incidental active flight, but not for the advanced style of flying mastered by today’s birds.

Was Archaeopteryx capable of flying, and if so, how? Although it is common knowledge that modern-day birds descended from extinct dinosaurs, many questions on their early evolution and the development of avian flight remain unanswered. Traditional research methods have thus far been unable to answer the question whether Archaeopteryx flew or not. Using synchrotron microtomography at the ESRF’s beamline ID19 to probe inside Archaeopteryx fossils, an international team of scientists from the ESRF, Palacký University, Czech Republic, CNRS and Sorbonne University, France, Uppsala University, Sweden, and Bürgermeister-Müller-Museum Solnhofen, Germany, shed new light on this earliest of birds.

>Read more on the European Synchrotron website

Image: The Munich specimen of the transitional bird Archaeopteryx. It preserves a partial skull (top left), shoulder girdle and both wings slightly raised up (most left to center left), the ribcage (center), and the pelvic girdle and both legs in a “cycling” posture (right); all connected by the vertebral column from the neck (top left, under the skull) to the tip of the tail (most right). Imprints of its wing feathers are visible radiating from below the shoulder and vague imprints of the tail plumage can be recognised extending from the tip of the tail.
Credits: ESRF/Pascal Goetgheluck

Synchrotron sheds light on the amphibious lifestyle of a new raptorial dinosaur

An exceptionally well-preserved dinosaur skeleton from Mongolia at ESRF.

The skeleton unites an unexpected combination of features that defines a new group of semi-aquatic predators related to Velociraptor. Detailed 3D synchrotron analysis allowed an international team of researchers to present the bizarre 75 million-year-old predator, named Halszkaraptor escuilliei, in Nature.

The study not only describes a new genus and species of bird-like dinosaur that lived during the Campanian stage of the Cretaceous in Mongolia but also sheds light on an unexpected amphibious lifestyle for raptorial dinosaurs.

>Read more on the ESRF website

Image: The team of scientists at ESRF’s BM05 beamline during the set up of Halszkaraptor escuilliei fossil. From left to right: Pascal Godefroit, Vincent Beyrand, Dennis Voeten, Paul Tafforeau, Vincent Fernandez, Andrea Cau.
Credit: ESRF/P.Jayet