BESSY II: Surface analysis of catalyst particles in aqueous solutions

In a special issue on the liquid jet method, a team reports on reactions of water molecules on the surfaces of metal oxide particles. The results are relevant for the development of efficient photoelectrodes for the production of green hydrogen.

Green hydrogen can be produced directly in a photoelectrochemical cell, splitting water with solar energy. However, this requires the development of super-efficient photoelectrodes that need to combine many talents at the same time: They must be excellent at converting sunlight into electricity, remain stable in acidic or basic water, act as catalysts to promote the splitting of water into hydrogen and oxygen, and be cheap, abundant and non-toxic. The large material class of metal oxides comes into question. However, it is difficult to find out what really happens at the interfaces between the solid metal oxide electrodes and the aqueous electrolyte. This is because standard X-ray analysis does not work to investigate processes on samples in liquid environments. One of the few suitable methods are experiments with a liquid jet: an extremely fine jet of liquid in which nanoparticles of metal oxide are suspended. This jet shoots through the X-ray light of BESSY II, and the interference of the evaporated molecules with the measurement data is negligible (more in the foreword to the special issue).

Dr. Robert Seidel is an expert on this liquid jet method, which is the subject of a special issue of Accounts of Chemical Research. He was invited to be the guest-editor of the issue and to report also on new experiments at BESSY II that he conducted with Dr. Hebatallah Ali and Dr. Bernd Winter from the Fritz Haber Institute.

They investigated two important model systems for photoelectrodes: Nanoparticles of iron oxide (hematite, α-Fe2O3, and anatase (titanium oxide or TiO2) in aqueous electrolytes with different pH values. Hematite and anatase in suspension are photocatalytic model systems. They are ideal for studying the solid/electrolyte interface at the molecular level and for exploring the chemical reactions at electrode-electrolyte interfaces.

“We used resonant photoelectron spectroscopy (PES) to identify the characteristic fingerprints of different reactions. This allowed us to reconstruct which reaction products are formed under different conditions, particularly as a function of pH.” The key question: How do the water molecules react with or on the nanoparticle surfaces?

In fact, how acidic or how basic an electrolyte is makes a big difference, Seidel noted. “At low pH, the water molecules on the surface of hematite tend to split. This is not the case with anatase, where water molecules are adsorbed on the surface of the TiO2 nanoparticles,” says Seidel. A basic pH value is required for water molecules to break down on the anatase nanoparticles. “Such insights into surface interactions with water molecules are only possible with this liquid-jet method,” says Seidel.

The spectra also revealed ultra-fast electron transitions between the metal oxide and the (split) water molecules on the surface. The results provide insights into the first steps of water dissociation and help to clarify the mechanisms of light-induced water splitting on metal oxide surfaces.

Read more on this story here

Image: The microjet is a fast-flowing stream of liquid so narrow that it produces only an extremely dilute vapour cloud. Photons and particles can reach and leave the surface of the jet without colliding with the vapour molecules.

Quantitative analysis of cell organelles with artificial intelligence

The analysis of cryo-X-Ray-microscopy data still requires a lot of time. Scientists developed a convolutional neural network, which identifies structures at high accuracy within a few minutes.

BESSY II’s high-brilliance X-rays can be used to produce microscopic images with spatial resolution down to a few tens of nanometres. Whole cell volumes can be examined without the need for complex sample preparation as in electron microscopy. Under the X-ray microscope, the tiny cell organelles with their fine structures and boundary membranes appear clear and detailed, even in three dimensions. This makes cryo x-ray tomography ideal for studying changes in cell structures caused, for example, by external triggers. Until now, however, the evaluation of 3D tomograms has required largely manual and labour-intensive data analysis. To overcome this problem, teams led by computer scientist Prof. Dr. Frank Noé and cell biologist Prof. Dr. Helge Ewers (both from Freie Universität Berlin) have now collaborated with the X-ray microscopy department at HZB. The computer science team has developed a novel, self-learning algorithm. This AI-based analysis method is based on the automated detection of subcellular structures and accelerates the quantitative analysis of 3D X-ray data sets. The 3D images of the interior of biological samples were acquired at the U41 beamline at BESSY II.

“In this study, we have now shown how well the AI-based analysis of cell volumes works, using mammalian cells from cell cultures that have so-called filopodia,” says Dr Stephan Werner, an expert in X-ray microscopy at HZB. Mammalian cells have a complex structure with many different cell organelles, each of which has to fulfil different cellular functions. Filopodia are protrusions of the cell membrane and serve in particular for cell migration. “For cryo X-ray microscopy, the cell samples are first shock-frozen, so quickly that no ice crystals form inside the cell. This leaves the cells in an almost natural state and allows us to study the structural influence of external factors inside the cell,” Werner explains.

“Our work has already aroused considerable interest among experts,” says first author Michael Dyhr from Freie Universität Berlin. The neural network correctly recognises about 70% of the existing cell features within a very short time, thus enabling a very fast evaluation of the data set. “In the future, we could use this new analysis method to investigate how cells react to environmental influences such as nanoparticles, viruses or carcinogens much faster and more reliably than before,” says Dyhr.

Read more in the Proceedings of the National Academy of Sciences journal article

Image: The images show part of a frozen mammalian cell. On the left is a section from the 3D X-ray tomogram (scale: 2 μm). The right figure shows the reconstructed cell volume after applying the new AI-supported algorithm

Credit: HZB

Understanding how nanoparticles interact is key to improve metal nanocatalysts

Nanocatalysts are key for the future of sustainable chemistry, yet, they typically suffer from rapid deactivation caused by a process called sintering. In a recent study led by the ALBA Synchrotron and Ghent University, researchers have developed an integrated approach where they complement the use of several characterization techniques to study platinum nanoparticle sintering at the micro-, meso- and macroscale. The demonstrated approach shows that mesoscale heterogeneities in the nanoparticle population drive sintering. This work will help broaden the fundamental understanding of nanoparticle sintering and thus design better strategies for catalyst fabrication.

Metal nanoparticle catalysts are the workhorses in a broad range of industrially important chemical processes such as producing clean fuels, chemicals and pharmaceuticals or cleaning exhaust from automobiles. These nanocatalysts are key for the future of sustainable chemistry, yet they typically suffer from rapid deactivation caused by a process called sintering. Due to sintering, the average nanoparticle size increases since this is energetically more efficient for the nanoparticles. However, this decreases their catalytic power.

To date, sintering phenomena are analyzed either at the macroscale, to examine averaged nanoparticle properties, or at the microscale, studying individual nanoparticles. However there is a knowledge gap on the nanocatalysts behavior at the mesoscale, the intermediate length scale between the macro and the micro worlds. At the mesoscale, large ensembles with thousands of nanoparticles can be studied as a “population” in which nanoparticles “communicate” – interact – with each other. In this context, nanoparticle sintering can be considered as a dynamic population of interacting nanoparticles, each of them trading and exchanging atoms to gain stability within the nanoparticle hierarchy.

In a recent study led by the ALBA Synchrotron and Ghent University, researchers have developed an integrated approach where they complement the use of several characterization techniques to study platinum nanoparticle sintering at the micro-, meso- and macroscale. More specifically, they used different analytical techniques and X-ray scattering characterization at the NCD-SWEET beamline in ALBA to show that mesoscale heterogeneities in the nanoparticle population drive sintering. Thus, deleting these heterogeneities would help to avoid sintering.

Read more on the ALBA website

Image: Researchers inside the experimental hutch of the NCD-SWEET beamline at the ALBA Synchrotron. From left to right: Zhiwei Zhang (Ghent University), Matthias Minjauw (Ghent University), Matthias Filez (Ghent University – KU Leuven) and Juan Santo Domingo Peñaranda (Ghent University).

Nanoparticles made from marine polymers for cutaneous drug delivery applications

A research led by the University of Porto in collaboration with the ALBA Synchrotron has studied for the first time the interaction of nanoparticles with the skin, using synchrotron light at the MIRAS beamline. The findings unveil the role of the different skin components and the mechanism of the permeation enhancement conferred with nanoparticles, made from marine polymers. A nano delivery system application in the skin will reduce the dosage needed due to controlled drug delivery and allow newer and better-targeting therapeutic strategies towards cutaneous administration.

Cutaneous drug delivery allows the administration of therapeutic and cosmetic agents through the skin. Advantages of this administration route include high patient compliance, avoidance of high concentration levels of the drug when reaching systemic circulation, and far fewer side effects compared to other administration routes.

Still, the peculiar skin structure assures protection to the human organism and hampers drug delivery. To overcome this issue, skin permeation enhancers, such as nanoparticles, can be used. They are pharmacologically inactive molecules that can increase skin permeability by interacting with the stratum corneum, the first layer of the epidermis, which is the outermost layer of the skin. However, the mechanisms of nanoparticles’ interaction with the skin structure are still unknown.

A research project led by the University of Porto (Portugal) in collaboration with the ALBA Synchrotron has studied for the first time the interaction of polymeric nanoparticles with the skin, using synchrotron light.

Read more on the ALBA website

Image: Nanoparticles made visible on human skin – 3D Rendering

Credit: Adobe Stock