Urea susbstitutes noble metal catalysts

… for the photodegradation of organic polluants.

A new laser-based technique developed by the Institute of Materials Science (ICMAB-CSIC) uses urea, a common substance in the chemical industry and a low-cost alternative to noble metal co-catalyst, to enable a more efficient, one-step production of hybrid graphene-based organic-inorganic composite layers for environmental remediation, photodegradation of antibiotic contaminants from wastewater. The composition and chemical bonds of the urea-enriched thin layers were studied in detail using synchrotron light at the ALBA Synchrotron.
Human activity is increasing the amount of pollutants in water and air, as well as in all sorts of materials at home and work place. The existence of antibiotic contamination is undeniably one of the most threatening challenges to date, at a time when antibiotic-resistant bacteria has already been flagged as the next world-wide pandemic crisis.
Semiconductor photocatalysts have long been investigated for environmental remediation because they can degrade or mineralize a wide range of organic contaminants as well as pathogens. Research focuses on addressing some drawbacks that prevent their use on a large scale. On the one hand, many photocatalysts are activated only by UV radiation which represents solely a small fraction of the total available solar emission. On the other hand, the recombination of the photogenerated  electron-hole pairs that enable the decomposition of the pollutant is usually faster than the oxidation reactions that cause the degradation of organic molecules. As a consequence, noble metal co-catalysts acting as electron scavengers, such as gold or platinum, are needed in the process.

Image: Researchers Ángel Pérez  del Pino and Enikö György from the ICMAB-CSIC together with Ibraheem Yousef, scientists responsible of MIRAS beamline at ALBA.

Magnetic patterning by electron beam assisted carbon lithography

The exploitation of the unique physical properties of thin films and heterostructures are opening intriguing opportunities for magnetic storage technology. These artificial materials will in fact enable novel architectures for a multitude of magnetic devices and sensors, promoting a significant improvement in storage density, functionality and efficiency. Their usage will also contribute to diminish the consumption of materials that are rare and difficult to extract, being often detrimental to the environment. With these objectives in mind, researchers are now looking with great attention at the combination of thin ferromagnetic layers with 2-dimensional crystals like graphene and transition metal dichalcogenides. Due to their layered structure, these systems exhibit very favorable magnetic properties, which can be tuned through thickness and interfacial interactions. For instance, graphene-cobalt stacks display an enhanced perpendicular magnetic anisotropy, a feature that is especially important for non-volatile memories.
The fabrication of layered materials, however, is still a very challenging process. Not only it requires atomic precision in the deposition of the various layers but also the ability to create nano or microstructures of arbitrary shape. Conventional lithography in conjunction with chemical etching permits nowadays to sculpture the matter with great accuracy, at lateral resolution close to the nanometer. Yet, this approach poses an important limitation, that is, the material can only be shaped by erosion. The ability to vary the chemical composition, by adding atoms for example, is instead very desirable for many applications. To date, this can be done by stimulating the fragmentation of suitable carrier molecules using photons or electrons. So far, various methods based on focused beam induced processing methods have been devised, which can be readily employed to deposit carbonaceous layers and metallic nanostructures. These methods, however, cannot be applied when ultra-clean, ultra-high vacuum (UHV) conditions are needed, as happens for the case of semiconductor industry.

>Read more on the Elettra website

Figure 1.  (left) Scheme of the protocol for printing chemo-magnetic patterns in ultrathin Co on Re(0001). (a) The film is exposed to CO at room temperature. The irradiation with a focused electron beam (yellow) stimulates the dissociation of the molecule, which results in the accumulation of atomic carbon on the surface. (b) Subsequently, the sample is annealed above 170 °C to desorb molecularly adsorbed CO from the non-irradiated surface regions. (c) LEEM image of an e-beam irradiated disk. Disk diameter: 1 μm; Co thickness: 4 atomic layers; irradiation energy: 50 eV; CO dose: 9.75 L; (d) Intensity profile across the orange line in the LEEM image in (c) and fit using a step function convoluted with a Gaussian of full width at half-maximum of 30 nm. The dashed blue lines indicate the 15–85% distance between minimum and maximum intensity. (e) XMCD-PEEM image of the same region at the Co L3 edge. (f) Intensity profiles across the blue and orange dashed lines in the XMCD-PEEM image in (e). The magnetic stripes indicate out-of-plane magnetic anisotropy. The stripe period is 120 nm. Adapted with permission from [1].
Copyright (2018) American Chemical Society.

Towards upscaling the production of graphene nanoribbons for electronics

Two-dimensional sheets of graphene in the form of ribbons a few tens of nanometers across have unique properties that are highly interesting for use in future electronics.

Researchers have now for the first time fully characterised nanoribbons grown in both the two possible configurations on the same wafer with a clear route towards upscaling the production.
Graphene in the form of nanoribbons show so called ballistic transport, which means that the material does not heat up when a current flow through it. This opens up an interesting path towards high speed, low power nanoelectronics. The nanoribbon form may also let graphene behave more like a semiconductor, which is the type of material found in transistors and diodes. The properties of graphene nanoribbons are closely related to the precise structure of the edges of the ribbon. Also, the symmetry of the graphene structure lets the edges take two different configurations, so called zigzag and armchair, depending on the direction of the long respective short edge of the ribbon.

See some video interviews and the entire article on the MAX IV website

Doped epitaxial graphene close to the Lifshitz transition

Graphene, an spbonded sheet of carbon atoms, is still attracting lots of interest almost 15 years after its discovery. Angle-resolved photoemission spectroscopy (ARPES) is a uniquely powerful method to study the electronic structure of graphene and it has been used extensively to study the coupling of electrons to lattice vibrations (phonons) in doped graphene. This electron-phonon coupling (EPC) manifests as a so-called “kink” feature in the electronic band structure probed by ARPES. What is much less explored is the effect of EPC on the phonon structure. A very accurate probe of the phonons in graphene is Raman spectroscopy.
M.G. Hell and colleagues from Germany, Italy, Indonesia, and Japan combined ARPES (carried out at the BaDelPhbeamline – see Figure 1) with low energy electron diffraction (LEED) and Raman spectroscopy (carried out at the University of Cologne in Germany) in a clever way to fully understand the coupled electron-phonon system in alkali metal doped graphene. LEED revealed ordered (1×1), (2×2), and (sqrt3xsqrt3)R30°adsorbate patterns with increasing alkali metal deposition. The ARPES analysis yielded not only the carrier concentration but also the EPC coupling constant. Ultra-High Vacuum (UHV) Raman spectra carried out using identically prepared samples with the very same carrier concentrations provided the EPC induced changes in the phonon frequencies.

>Read more on the Elettra Sincrotrone Trieste website

Image:  Top: ARPES spectra along the Γ-K-M high symmetry direction of the hexagonal Brillouin zone for Cs doped graphene/Ir(111) with increasing Cs deposition. The Dirac energy ED and the observed LEED reconstruction are also indicated. Bottom: Corresponding Fermi surfaces at the indicated charge carrier concentration. 

Graphene on the way to superconductivity

Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance. They probed the bandstructure at BESSY II with extremely high resolution ARPES and could identify a flat area at a surprising location.

Carbon atoms have diverse possibilities to form bonds. Pure carbon can therefore occur in many forms, as diamond, graphite, as nanotubes, football molecules or as a honeycomb-net with hexagonal meshes, graphene. This exotic, strictly two-dimensional material conducts electricity excellently, but is not a superconductor. But perhaps this can be changed.

A complicated option for superconductivity
In April 2018, a group at MIT, USA, showed that it is possible to generate a form of superconductivity in a system of two layers of graphene under very specific conditions: To do this, the two hexagonal nets must be twisted against each other by exactly the magic angle of 1.1°. Under this condition a flat band forms in the electronic structure. The preparation of samples from two layers of graphene with such an exactly adjusted twist is complex, and not suitable for mass production. Nevertheless, the study has attracted a lot of attention among experts.

>Read more on the BESSY II at HZB website

Image: The data show that In the case of the two-layer graphene, a flat part of bandstructure only 200 milli-electron volts below the Fermi energy. Credit: HZB

Golden nanoglue completes the wonder material

Modern microelectronics relies on semiconductors and their metal electrodes. High-performance device functionality demands high transistor density within a single chip, which soon will reach the physical limits of bulk materials. Alternatives have been found in atomically thin materials, e.g. graphene and its semiconductive inorganic relatives.

MoS2 (molybdenum disulphide) is the representative inorganic layered crystal with properties similar to those of graphene. To be useful in applications, it must be joined to the metallic electrodes to enable charge flow between the metals and semiconductive (M/S) counterparts. In a recent study, scientists from University of Oulu, Finland have demonstrated the success of joining MoS2 to Ni (nickel) particles by using gold (Au) nanoglue as a buffer material. Through in-house observations and the first-principles calculations, the semiconductor and metal can be bridged either by the crystallized gold nanoparticles, or by the newly formed MoS2-Au-Ni ternary alloy.
A metallic contact is formed, leading to enhanced electron mobility crossing the M/S interface.

>Read more on the MAX IV Laboratory website

Image: representation of gold nanoglue joining molybdenum disulphide and nickel. 

Towards oxide-integrated epitaxial graphene-based spin-orbitronics

An international team of researchers from IMDEA Nanociencia and Complutense and Autónoma universities in Madrid, the Institut Néel in Grenoble and the ALBA Synchrotron in Barcelona has elucidated a new property of Graphene/Ferromagnetic interfaces: the existence of a sizable magnetic unidirectional interaction, technically a Dzyaloshinskii–Moriya Interaction of Rashba origin, which is responsible for establishing a chiral character to magnetic domain wall structures.

A major challenge for future spintronics is to develop suitable spin transport channels with long spin lifetime and propagation length. Graphene can meet these requirements, even at room temperature. On the other side, taking advantage of the fast motion of chiral textures, that is, Néel-type domain walls and magnetic skyrmions, can satisfy the demands for high-density data storage, low power consumption, and high processing speed. The integration of graphene as an efficient spin transport channel in the chiral domain walls technology depends on the ability to fabricate graphene-based perpendicular magnetic anisotropy (PMA) systems with tailored interfacial SOC.

Studies on graphene-based magnetic systems are not abundant and, typically, make use of metallic single crystals as substrates which jeopardize the exploration of their transport properties (since the current is drained by the substrate). To solve this challenge, the IMDEA Nanociencia leading team succeeded to fabricate high-quality epitaxial asymmetric gr/Co/Pt(111) structures grown on (111)-oriented oxide substrates. The quality of the interfaces was checked by low-energy electron diffraction and also by advanced high-resolution transmission microscopy at the Universidad Complutense de Madrid (UCM) microscopy centre and resonant X-ray specular reflectivity at BOREAS beamline at ALBA (see fig.1). The magnetic anisotropy and properties were investigated by magneto-optical Kerr magnetometry in IMDEA and Universidad Autónoma de Madrid (UAM) and complemented with element resolved XMCD magnetometry also at BOREAS beamline. Finally, the chirality of the magnetic domain walls was analysed using a customized magneto-optical Kerr effect microscope and pulse field electronics in collaboration with the team at Institut Néel in Grenoble.

>Read more on the ALBA website


Graphene-Based Catalyst Improves Peroxide Production

Hydrogen peroxide is an important commodity chemical with a growing demand in many areas, including the electronics industry, wastewater treatment, and paper recycling.

Hydrogen peroxide (H2O2) is a common household chemical, well known for its effectiveness at whitening and disinfecting. It’s also a valuable commodity chemical used to etch circuit boards, treat wastewater, and bleach paper and pulp—a market expected to grow as demand for recycled paper products increases.

Compared to chlorine-based bleaches, hydrogen peroxide is more environmentally benign: the only degradation product of its use is water. However, it’s currently produced through a multistep chemical reaction that consumes significant amounts of energy, generates substantial waste, and requires a catalyst of palladium—a rare and expensive metal. Furthermore, the transport and storage of bulk hydrogen peroxide can be hazardous, making local, on-demand production highly desirable.

Better living through electrochemistry

Scientists seek a way to generate hydrogen peroxide electrochemically—by a much simpler process called the oxygen reduction reaction (ORR). This reaction takes oxygen from the air and combines it with water and two electrons to produce H2O2. If this reaction could be efficiently catalyzed, it could enable the disinfection of water at remote locations, or during disaster recovery, using hydrogen peroxide made from local air and water. For this work, the researchers focused on hydrogen peroxide synthesis in alkaline environments, where the reaction bath can be used directly, such as for bleaching or the treatment of acidic waste streams.

>Read more on the Advanced Light Source website

Image: The production of hydrogen peroxide (H2O2) from oxygen (O2) was efficiently catalyzed by graphene oxide, a form of graphene characterized by various oxygen defects that act as centers for catalytic activity. Depicted are two types of defects: one in which an oxygen atom bridges two carbon atoms above the graphene plane, and one where oxygen atoms replace carbon atoms within the graphene plane.

Ferromagnetic and antiferromagnetic coupling of spin molecular interfaces

Researchers from the physics department of the Università “La Sapienza” in Rome, Centro S3 of Modena and ALBA, have demonstrated that magnetic coupling of metal-organic molecules to a magnetic substrate mediated by a graphene layer can be tuned in strength and direction by choosing the symmetry of the molecular orbitals that is largely preserved thanks to the graphene layer. The results have been published in the journal Nano Letters.
Paramagnetic molecules become potential building blocks in spintronics when their magnetic moments are stabilized against thermal fluctuations, for example, by a controlled interaction with a magnetic substrate. Spin molecular interfaces with preserved magnetic activity and exhibiting magnetic remanence at room temperature (RT) can open the route to engineer highly spin-polarized, nanoscale current sources. The need to fully control the organic spin interface and the tuning of ferromagnetic (FM) or antiferromagnetic (AFM) coupling to achieve a stable conductance has motivated a vast experimental interest.

Image: Figure 1: a,b) Antiferromagnetic/Ferromagnetic coupling as deduced by element-specific hysteresis loops of  a FePc and CuPc (respectively) to a Cobalt layer with perpendicular magnetic anisotropy intercalated below graphene. c,d) orbital-porjection of the spin-density for the FePc and CoPc interface reflecting the different symmetry of the molecular orbitals involved in the ferromagnetic and antiferromagnetic interaction.

X-ray laser opens new view on Alzheimer proteins

Graphene enables structural analysis of naturally occurring amyloids

A new experimental method permits the X-ray analysis of amyloids, a class of large, filamentous biomolecules which are an important hallmark of diseases such as Alzheimer’s and Parkinson’s. An international team of researchers headed by DESY scientists has used a powerful X-ray laser to gain insights into the structure of different amyloid samples. The X-ray scattering from amyloid fibrils give patterns somewhat similar to those obtained by Rosalind Franklin from DNA in 1952, which led to the discovery of the well-known structure, the double helix. The X-ray laser, trillions of times more intense than Franklin’s X-ray tube, opens up the ability to examine individual amyloid fibrils, the constituents of amyloid filaments. With such powerful X-ray beams any extraneous material can overwhelm the signal from the invisibly small fibril sample. Ultrathin carbon film – graphene – solved this problem to allow extremely sensitive patterns to be recorded. This marks an important step towards studying individual molecules using X-ray lasers, a goal that structural biologists have long been pursuing. The scientists present their new technique in the journal Nature Communications.

Amyloids are long, ordered strands of proteins which consist of thousands of identical subunits. While amyloids are believed to play a major role in the development of neurodegenerative diseases, recently more and more functional amyloid forms have been identified. “The ‘feel-good hormone’ endorphin, for example, can form amyloid fibrils in the pituitary gland. They dissolve into individual molecules when the acidity of their surroundings changes, after which these molecules can fulfil their purpose in the body,” explains DESY’s Carolin Seuring, a scientist at the Center for Free-Electron Laser Science (CFEL) and the principal author of the paper. “Other amyloid proteins, such as those found in post-mortem brains of patients suffering from Alzheimer’s, accumulate as amyloid fibrils in the brain, and cannot be broken down and therefore impair brain function in the long term.”

Image: On the ultra-thin, extremely regular layer of graphene, the fibrils align themselves in parallel in large domains. The intense X-ray light from the X-rax free-electron laser LCLS at the SLAC National Accelerator Center enabled the researchers to gain partial information about the fibril structure from ensembles of just a few fibrils.
Credit: Greg Stewart/SLAC National Accelerator Laboratory

Subfilamentary Networks in Memristive Devices

Redox-based memristive devices are one of the most attractive emerging memory technologies.

…in terms of scaling, power consumption and speed. In these devices, external electrical stimuli cause changes of the resistance of an oxide layer sandwiched between two metal electrodes. In the simplest application, the device can be set into a low resistance state (LRS) and reset into a high resistance state (HRS), which may encode a logical one and zero, respectively. The major obstacle delaying large-scale application, however, is the large cycle-to-cycle (C2C) and device-to-device (D2D) variability of both LRS and HRS resistance values. These variabilities describe the stochastic nature of the switching process within one cell, resulting in different resistances obtained for each switching cycle and different resistances obtained for different cells on the same chip.

Read more on the Elettra website.

Image:(a) Schematic of the device geometry. A SrTiO3 layer (blue) is sandwiched between a Nb:SrTiO3 bottom electrode (dark grey) and graphene top electrode (grey honeycomb lattice). The graphene electrode is contacted through a metal lead, which is electrically separated from the continuous bottom electrode, allowing for biasing inside PEEM instruments. (b) Quasistatic I-V curve of a representative graphene/SrTiO3/Nb:SrTiO3 device. The bottom electrode serves as virtual ground, while the bias is applied to the graphene top electrode. (c) PEEM image of a graphene/Al2O3/SrTiO3 device in the LRS at an electron energy E – EF of 3.4 eV. Scale bar, 5 µm. (d) PEEM image of the same device after Reset. (e) and (f) PEEM images after one additional Set and Reset operation, respectively. Insets: magnified photoemission threshold map of the area around the conductive filament. The maps were obtained by fitting the threshold spectrum for each pixel.

Topological insulator gap in graphene contacted with Pb

Up to now the proposed modifications do not allow to introduce graphene to existing electronic devices.

Graphene is the most promising two dimensional material for nanoelectronic applications featuring the relativistic-like electronic spectrum. Contact of graphene with various materials and its functionalization allows to manipulate the electronic structure, e.g. to change the conductivity type and band gap creation. The latter is of great interest due to the requirements for graphene transistor realisation. Furthermore, graphene contact with heavy/magnetic metals results in the lifting of the spin degeneracy of the Dirac cone, opening the spintronics field for its applications. However, up to now the proposed modifications do not allow to introduce graphene to existing electronic devices.

>Read more on the Elettra website.

Image: a) Sketch of the studied system, the Pb atoms presented by yellow spheres; b) ARPES image of graphene/Pb/Pt(111) in the region of K point, taken as a sum of two spectra with p-and s-polarization of light; c) schematic spin structure of the graphene states in the case of large “intrinsic” spin-orbit interaction d) ARPES mapping of the system in two orthogonal k-directions near the K point of graphene.

The miracle material graphene: convex as a chesterfield

Graphene possesses extreme properties and can be utilised in many ways.

Even the spins of graphene can be controlled through use of a trick. This had already been demonstrated by a HZB team some time ago: the physicists applied a layer of graphene onto a nickel substrate and introduced atoms of gold in between (intercalation).

The scientists now show why this has such a dramatic influence on the spins in a paper published in 2D Materials. As a result, graphene can also be considered as a material for future information technologies that are based on processing spins as units of information.

>Read More

Fluorination of suspended graphene

Functionalization is a well-established method to manipulate the electronic properties of graphenes

It consists in the substitution of carbon atoms in the hexagonal network by other elements such as heteroatoms (nitrogen or boron, the most common) or in the introduction of more complex functional groups.

The customization of the graphene exceptional electronic properties by the functionalization opens different avenues for future applications including bio and chemical-sensors. Among various functionalization methods, plasma process and ion irradiation have been widely employed for the modification of surface chemical composition and properties. These techniques have attracted the attention of a vast scientific audience because they can be used to tailor the surface reactivity in different materials making them suitable for various applications ranging from chemical sensing to medical implants. In particular, the fluorination of graphene allows the tuning of the optical bandgap, introducing a progressive semiconducting behaviour for increasing fluorine content ending in insulating properties for fully fluorinated graphene.

>Read More

Liquid-phase chemistry: Graphene nanobubbles

X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Absorption Spectroscopy (XAS) provide unique knowledge on the electronic structure and chemical properties of materials.

Unfortunately this information is scarce when investigating solid/liquid interfaces, chemical or photochemical reactions in ambient conditions because of the short electron inelastic mean free path (IMFP) that requires a vacuum environment, which poses serious limitation on the application of XPS and XAS to samples operating in atmosphere or in the presence of a solvent. One promising approach to enable the use of conventional electron spectroscopies is the use of thin membrane, such as graphene (Gr), which is transparent to both X-ray photons and photoelectrons. For these purposes, this work proposes an innovative system based on sealed Gr nanobubbles (GNBs) on a titanium dioxide TiO2 (100) rutile single crystal filled with the solution of interest during the fabrication stage (Figure 1a).

The formation of irregularly shaped vesicles with an average height of 6 nm and lateral size of a few hundreds of nanometers was proved by using a multi-technique approach involving Atomic Force Microscopy (AFM, see Figure 1b,c,d), Raman (Figure 1e) and synchrotron radiation spectroscopies (Figure 2), which have unequivocally demonstrated the presence of water inside the GNBs and the transition to a flat Gr layer after water evaporation by thermal heating up to 350 °C in ultra high vacuum (UHV).

>Read More