Transforming chicken manure into nutrient-rich fertilizer for crops

An international collaboration between researchers from Brazil and the United States has identified a process for turning poultry waste into a soil additive for agriculture.

“Several countries have large poultry production, especially United States and Brazil, where agriculture is also concentrated,” says Aline Leite, a Post Doctoral researcher from the Federal University of Lavras in Brazil. “So, reusing a global residue generated in large amounts is an interesting way of promoting a circular economy.”

The researchers harvested poultry manure from an experimental site in the United States, which they heated to turn into biochar, a carbon-rich substance that is used as a soil additive to replenish critical nutrients like phosphorus.

“We are focused on understanding mechanisms that are responsible for increasing phosphorus availability in materials like manure,” says Leite.

Poultry manure is full of calcium and requires higher temperature treatments to turn the waste into biochar, however, these higher temperatures can have an effect on the amount of phosphorus available.

In order to ensure that the biochar contained sufficient available phosphorus, the researchers enriched it with another mineral, magnesium, which protected the phosphorus from the heat and enabled it to form more soluble forms of phosphorus.

Using the IDEAS and VLS-PGM beamlines at the Canadian Light Source (CLS) at the University of Saskatchewan (USask), the researchers were able to visualize the connection between phosphorus and magnesium and confirm the success of their technique.

Their findings were recently published in the scientific journal, Chemosphere.

While phosphorus reserves are found across the globe, the nutrient is a finite resource. Finding ways to recycle the mineral is an important issue for scientists.

“There’s no excuse for not using the phosphorus that is already in the food chain, for example, by reusing the waste that is already generated,” says Leite.

Leite says that synchrotron technology is essential for research into agricultural applications.

Read more on the Canadian Light Source website

Wax proves key to protecting crops from drought and frost

A team of researchers used the Canadian Light Source (CLS) at the University of Saskatchewan (USask) to show that cuticular wax—a waxy layer that covers exterior surfaces of plants, much like human skin—provides a barrier against low temperatures and dehydration.

While numerous studies have established the role of cuticular wax in impacting drought resistance, few studies have examined its role in plant frost resistance and even fewer have examined both, said Dr. Karen Tanino with the College of Agriculture and Bioresource at USask. Her team’s findings were published recently in the International Journal of Molecular Sciences.

The ultimate goal of the research is to provide plant breeders with information that enables them to more efficiently select superior genetic lines and develop more climate-resistant crops, said Tanino.

Read more on the Canadian Light Source website

Image: The team studied a variety of Arabidopsis phenotypes during the project.

Dust travelled thousands of miles to enrich hawaiian soils

With its warm weather and sandy beaches, Hawaii is a magnet for tourists every year. This unique ecosystem also attracts soil scientists interested in what surprises may lie beneath their feet.

In a recent paper published in Geoderma, European researchers outline how they used the rich soils of Hawaii to study the critical movement of phosphorous through the environment. By better understanding the amount and type of phosphorus in the soil, they can help crops become more successful and maintain the health of our ecosystems for years to come.

The project was led by Agroscope scientist Dr. Julian Helfenstein, Prof. Emmanuel Frossard with the Institute of Agricultural Sciences, ETH Zurich; and Dr. Christian Vogel, a researcher at the Federal Institute for Materials Research and Testing in Berlin.

The team used the Canadian Light Source (CLS) at the University of Saskatchewan to help analyze the different types of phosphorus in their samples and track their origins.

Read more on the Canadian Light Source website

Image: Dr. Christian Vogel using the VLS-PGM beamline to analyze a sample at the CLS.

Mapping metals in feathers

Synchrotron technique promising for tracing metals in nature

University of Saskatchewan (USask) and Environment and Climate Change Canada (ECCC)  researchers have mapped metals in bird feathers, a technique that could help make environmental monitoring less destructive.

In a recent paper published in X-ray Spectrometry, researchers used the Canadian Light Source (CLS) synchrotron at USask to examine the level and distribution of zinc in feathers from birds that were fed high-zinc diets.

“The same technique could be applied to toxic metals like mercury, even at low concentrations,” says Agriculture and Agri-Food Canada scientist Fardausi Akhter. “You could just take a feather from the bird and be able to show if it was exposed to toxic metals present in the environment.”

Akhter, a toxicologist interested in applying synchrotron techniques to environmental questions, first started working on this project with Graham Fairhurst, a USask avian ecophysiologist, when they were both working as postdocs supervised by Catherine Soos. Soos is a wildlife health specialist and research scientist at ECCC, and adjunct professor at USask (Department of Veterinary Pathology, Western College of Veterinary Medicine), whose research focuses on investigating impacts of large-scale environmental changes on wildlife health. Her team often uses feathers as tools to evaluate exposure to toxic metals, and impacts of exposure on health of wild birds.  

>Read more on the Canadian Light Source website

Image: Part of the research team at CLS (left to right): Fardausi (Shathi) Akhter, Jamille McLeod (ECCC), Bruce Pauli (ECCC), Peter Blanchard (CLS), Landon McPhee (ECCC), and Catherine Soos (ECCC)

Helping to grow more food in Africa

University of Saskatchewan scientists help farmers in West Africa improve crops.

Derek Peak and Abimfoluwa Olaleye are using Canadian Light Source at the University of Saskatchewan (Usask) to help farmers in Nigeria and the Republic of Benin to grow vegetables less expensively and more sustainably. The USask researchers and their team recently published a paper in Soil Systems that explores the effects of an innovative farming practice, fertilizer microdosing, on two vegetable systems in both countries.

“The overall idea was to scale up good, innovative ideas to solve food security problems in the regions,” says Peak. “We combine agricultural studies out in the field with socio-economic studies and development work.” Olaleye’s interest in the project is both scientific and personal. “Anything agriculture always gets my interest, it’s something I’m passionate about. And helping people is a big bonus. My dad was a farmer back in Nigeria, so I picked up on that,” he says.

>Read more on the Canadian Light Source website

Image: Abimfoluwa Olaleye (right) and Taylor Procyshen, a graduate student who helped with the project, working in the laboratory together.

Growing an international community for agricultural synchrotron research

Dr. Chithra Karunakaran’s passion for agriculture has taken her around the world and helped her to grow an international agricultural imaging research community from Saskatoon. 

Given that the Canadian Light Source (CLS) is situated on the University of Saskatchewan (USask) campus, renowned for agriculture, and surrounded by some of the finest farm land in the country, it’s little wonder it has developed a reputation for outstanding agriculture-related research. Location is only part of the story though; some credit has to go to an engineer determined to apply advanced synchrotron techniques to the study of what we grow and what we eat.

The view from Agriculture Science Manager Dr. Chithra Karunakaran’s office window is dominated by the USask College of Agriculture and Bioresources, which also owns the research greenhouse located across the street from the CLS. Both are part of what she termed “the right ecosystem” needed to expand ag research at the facility, a project she has devoted herself to since she arrived in Saskatoon. The key has been adapting beamline techniques to serve the needs of plant, soil and food scientists.

>Read more on the Canadian Light Source website

Image: Karunakaran working with synchrotron science equipment. 

Scientist discover that charcoal traps ammonia pollution

Discovery could have implications for agricultural management and climate change mitigation

Cornell University scientists Rachel Hestrin and Johannes Lehmann, along with collaborators from Canada and Australia, have shown that charcoal can mop up large quantities of nitrogen from the air pollutant ammonia, resulting in a potential slow-release fertilizer with more nitrogen than most animal manures or other natural soil amendments. The results were published Friday in Nature Communications.

Ammonia is a common component of agricultural fertilizers and provides a bioavailable form of the essential nutrient nitrogen to plants. However, ammonia is also a highly reactive gas that can combine with other air pollutants to create particles that travel deep into the lungs, leading to a host of respiratory issues. It also indirectly contributes to climate change when excess fertilizer inputs to soil are converted into nitrous oxide, a potent greenhouse gas.

In Canada, ammonia emissions have increased by 22 per cent since 1990, and 90 per cent are produced by agriculture, particularly from manures, slurries and fertilizer applications. Mitigating this pollutantwithout limiting fertilizers and food growth for our growing world populationis key to a sustainable future.

>Read more on the Canadian Light Source website

Image: Rachel Hestrin (right) on the beamlines at Canadian Light Source with fellow Cornell researcher Angela Possinger.

Scientists work toward new canola varieties

Scientists are in a race against a disease that threatens canola, one of Western Canada’s most important crops, and they are looking to the Canadian Light Source to learn more about the genetic resistance to this disease.

Clubroot causes swelling on the canola roots eventually killing the plant. Finding a way for those roots to resist this soil-borne disease is the cornerstone of the strategy for managing the disease, says Gary Peng, a scientist at Agriculture and Agri-Food Canada’s Saskatoon Research and Development Centre.

“The consequences of clubroot in a canola field can be devastating. It can wipe out the whole crop,” said Peng.

The first case of clubroot in canola was reported in 2003 in several fields in the Edmonton area. The infestation spread rapidly to fields north of the city and the disease is now found in more than 2,000 fields in a wide band across Alberta. In Saskatchewan, it was first detected in 2008, but significant evidence of the disease attacking the roots of canola plants wasn’t identified until 2011, according to the Canola Council of Canada.

>Read more on the Canadian Lightsource website

SXRF shows anthers have a craving for copper

Research links micronutrient copper with pollen fertility and seed/grain yield

The global demand for high-yield crops is increasing with growing population and decreasing farmland resources. These trends force the utilization of marginal lands for agricultural purposes. The bioavailability of essential mineral nutrients such as copper in these soils is often low, causing the reduced crop growth and fertility, and consequently low grain yield or even total crop failure. Although copper is recognized as an essential micronutrient for plant fertility, scientists still do not completely know which reproductive structures of plants require copper, how copper is delivered there and how copper transport processes are regulated. These questions are currently being addressed in the Vatamaniuk lab using model plants Arabidopsis thaliana and Brachypodium distachyon as well as a crop species, wheat, Triticum aestivum.

In studies using A. thaliana, the Vatamaniuk research group identified a new protein, CITF1, whose transcript accumulates in A. thaliana flowers during periods of copper deficiency. CITF1 acts as a transcription regulator: it regulates copper uptake into the roots and its delivery to flowers, working in tandem with SPL7 that is the central regulator of copper homeostasis in this plant species. When SPL7 and CITF1 do not function, as in the citf1 spl7 double mutant, its seedlings die and its pollen becomes infertile. Working with CHESS scientist, Rong Huang, at F3 beamline, a member of the Vatamaniuk research group, Ju-Chen Chia has shown that the sites of pollen production, anthers of flowers, accumulate the majority of the absorbed copper in A. thaliana. Huang and Chia also showed that copper accumulation was somewhat lower in anthers and carpels of the citf1 mutant and was further reduced in anthers and carpels of the spl7 mutant compared to wild-type plants (Fig. 1). They also showed that the majority of anthers of the citf1 spl7 double mutant lacked copper and that this deficiency resulted in pollen infertility.

>Read more on the CHESS website