Analysing the structure of biopolymers for the food industry

A research group from the Institute of Agrochemistry and Food Technology (IATA-CSIC) in Valencia is using scattering techniques at the ALBA Synchrotron to develop new packaging systems made of biopolymers, an environmentally friendly solution for the food industry.

Plastic is the packaging material of most of the food we consume nowadays. This results in a severe problem as common plastics are made of petroleum – a limited resource with highly variable price – and supposes a huge environmental impact – most plastic wastes need more than 400 years to decompose.

Researchers from the Food Safety and Preservation department of the Institute of Agrochemistry and Food Technology (IATA-CSIC), located in Paterna (Valencia), are looking for more sustainable ways of producing food packaging with appropriate mechanical and chemical properties. They are investigating biopolymers that can be made from biomass such as algae.
“We need to look for alternative sources which do not compete with food. This is why marine resources such as algae and microalgae are very interesting. They proliferate very quickly, grow in a wide variety of environments and do not interfere with food production”, according to Ámparo López-Rubio, researcher at the IATA-CSIC.

>Read more on the ALBA website

Image: At the left, Juan Carlos Martínez, scientist from the ALBA Synchrotron with users Amparo López Rubio and Marta Martínez Sanz from IATA-CSIC at the NCD-SWEET experimental hutch.

Samtack uses ALBA Synchrotron light for improving food packaging

Thanks to the CALIPSOplus European project, Samtack company is analysing at ALBA nanoparticles contained in a new food packaging system that will prevent food oxidation and extend its lifetime.

We all expect to purchase high quality and fresh food that, even if it has been kept for few days in the supermarket shelf, it still maintains its optimum safety and quality such as well as flavor. Different ambient conditions can modify food quality: moisture can affect the crispness of the product, oxygen can oxidize food with large fat components (e.g. potato chips) and change its taste, while light can degrade vitamins from milk or even remove the aromatic and volatile components from ground coffee and off-taste. Hence, different barriers are required to protect food from moisture, oxygen or light and that’s the point where packaging plays a key role. Packaging acts as a barrier and extends the product’s shelf life while contributing to diminish the amount of food that is thrown away and avoiding overproduction of food.

Samtack, founded in 1988 and based in Esparreguera (Barcelona), is a manufacturer of glues and adhesives specialized in the sector of graphic arts and packaging. Samtack has developed a new flexible multilayer system, in collaboration with the University of Zaragoza and the Complutense University of Madrid, that contains Selenium nanoparticles and is capable to increase food shelf life.

>Read more on the ALBA website

A first look at how miniscule bubbles affect the texture of noodles

The texture of a noodle is a remarkably complicated thing. When you bite into a spoonful of ramen noodles, you expect a bit of springiness (or a resistance to your bite) on the outside and a pleasantly soft give on the interior. These variations are so tiny as to be often overlooked, but they matter to noodle quality.

There are many factors in play in making a good noodle. For a wheat noodle, the structure of the gluten affects the overall quality. How a noodle dough is stretched, folded, and rolled out matters. And in between all of this, there are miniscule air bubbles that are part of the mix and influence texture.

Until recently, no one had ever looked at the bubbles in noodle dough.

“There was absolutely nothing in the literature indicating that the bubbles were there or that they were important at all. We did have some indirect evidence for bubbles from our ultrasonic experiments, but CLS (Canadian Light Source) microtomography was in some ways a hail Mary experiment: OK, let’s just sheet some dough and see what we find,” said Martin Scanlon, U of M professor in the Faculty of Agriculture and Food Sciences, and the project’s lead researcher.

>Read more on the Canadian Light Source website

 

Photonic structure of white beetle wing scales: optimized by evolution

They have developed a complicated three-dimensional photonic structure on their wing scales in order to efficiently reflect white light.

At the same time, this structure is very porous and is confined within a thin layer of about 10  µm, about one fifth of the thickness of ordinary white paper, which makes it very light and therefore advantageous to fly.

Researchers of the University of Fribourg and their collaborators wanted to understand how this fascinating structure is optimized, for which they needed a faithful 3D image. However, conventional microscopy techniques providing enough spatial resolution such as electron microscopy required the sample to be cut for imaging consecutive slices, causing damage of the structure during the process.

>Read More on the PSI website

Image: Cyphochilus white beetle source: PSI