Improved treatment for patients with kidney failure

USask researchers have developed a better membrane for dialysis machines that could lead to safer treatment, improved quality of life for patients with kidney failure.

Over two million people worldwide depend on dialysis or a kidney transplant, according to the National Kidney Foundation. In Canada, the number of individuals facing kidney failure has climbed 35 per cent since 2009 and nearly half (46 per cent) of new kidney disease patients are under age 65, according to The Kidney Foundation of Canada.

Using the Canadian Light Source (CLS) at the University of Saskatchewan (USask), researchers have developed a better membrane for dialysis machines that could lead to safer treatment and improved quality of life for patients with kidney failure.

A dialysis machine is used to filter toxins, waste products, salts, and excess fluid from a patient’s blood when their kidneys can no longer perform this function well. However, negative reactions between dialysis membranes and the patient’s blood can lead to serious complications like blood clots, heart conditions, anemia, blood poisoning, infections, and more.

Dr. Amira Abdelrasoul, an associate professor with USask’s College of Engineering, is an expert on membranes and is determined to help patients on dialysis. “I lost a close family member due to dialysis,” she said. “I saw all the complications he experienced and how he suffered. So, I put all my efforts, knowledge, and background into this research area because I would like to support patients and avoid anyone having to lose a loved one from this treatment.”

The new dialysis membrane developed by her team is a significant improvement over those used in hospitals today, according to Abdelrasoul. Some of the commercial membranes currently in use contain heparin, a medicine that reduces blood clots; however, they also have an intense negative charge on their surface that causes serious side effects.

Read more on the CLS website

Microscale clues provide insight into cataclysmic Tongan volcanic eruption

Key Points
  • The intensely powerful and destructive Hunga blast was unlike previous events, It was a unique event in that scientists were able to capture the eruption with satellite imagery and other instruments.
  • The Hunga volcano started out with a flat upper surface to a depth of 150 metres before the eruption, which ejected at least 6.5 cubic kilometres of ash and rock and left a deep caldera 250 metres below sea level.
  • Electron microscopy revealed different concentrations of chemicals in the two types of magma that came together and mingled to form distinctive swirling bands in the samples. Infrared beamline analysis techniques provided crucial information about the diffusion of water in the tiny fragments.
  • The chilling effect of the water as the magma fragmented, the concentration of water and the chemical composition of the particles also provided clues about the depth at which the event occurred.

When the Tongan Hunga volcano erupted in January this year, it was a huge explosion with a mass ejection that reached more than 55 kilometres into the atmosphere, causing local fatalities and evacuations. The blast created significant tsunami waves in the Pacific Basin and generated pressure waves that encircled the globe.

Although not a significant inundation,  the impact of the tsunami reached Australia with waves of 82cm at the Gold Coast, 65cm at Port Kembla and 77cm at Eden’s Twofold Bay in NSW.

In an effort to understand why the eruption was so explosive, internationally-recognised volcanologist Prof. Shane Cronin of the University of Auckland and associates rely on beamlines at the Australian Synchrotron to support comprehensive research on the Hunga event.

Two sets of experiments have already been carried on the Imaging and Medical beamline and the Infrared Microspectroscopy beamline, while another investigation is scheduled for the X-ray fluorescence microscopy beamline.

Read more on the ANSTO website

Image: Undersea volcano