New cryo-EM Collaboration

UK set to be global leader in providing large-scale industrial access to Cryo-EM for drug discovery thanks to new collaboration.


Thermo Fisher Scientific and Diamond Light Source are creating a step change for life sciences sector, a one-stop shop for structural biology and one of largest cryo-EM sites in the world.
An agreement to launch a new cryo-EM capability for use in the life sciences industry sector by Thermo Fisher Scientific, one of the world leaders in high-end scientific instrumentation, and Diamond Light Source, the UK’s national synchrotron and one of the most advanced scientific facilities in the world, was announced today ahead of the official opening of the new national electron bio-imaging centre (eBIC) which will be held at Diamond on September 12th 2018.

This announcement confirms Diamond as one of the major global cryo-EM sites embedded with an abundance of complementary synchrotron-based techniques, and thereby, provides the life sciences sector with an offer not available anywhere else in the world.

Professor Dave Stuart, Life Sciences Director at Diamond and MRC Professor of Structural Biology at the University of Oxford, Department of Clinical Medicine, says, “Access to 21st century scientific tools to push the boundaries of scientific research is essential for both academia and industry, and what we have created here at Diamond is truly unique in the world in terms of size and scale. The new centre offers the opportunity for almost real-time physiology, capturing proteins in action at cryo-temperatures by flash-freezing them at various stages. What Diamond has created with eBIC is an integrated facility for structural biology, which will accelerate R&D for both industry and academic users. The additional advanced instruments made available by Thermo Fisher will position the UK as a global leader in providing large-scale industrial access to cryo-EM for drug discovery research. Our new collaboration provides a step change in our offer for industry users and helps ensure that R&D remains in the UK.”

>Read more on the Diamond Light Source website

Image: Close up sample loading Krios I.

Video presentation of thesis at NanoMAX

In April 2018, Karolis Parfeniukas (image) defended the first thesis to be fully completed at one of the new MAXIV beamlines called NanoMAX Here’s an interview with Karolis about this project making zone plates to improve focusing of the X-ray beam. Thesis from KTH university, Royal Institute of Technology in Stockholm. PLease watch here the presentation of his research at MAX IV Laboratory:

>Read more here about MAX IV Laboratory

MicroMAX, a new beamline for life science

The Novo Nordisk Foundation has generously decided to fund the construction and operation of a new beamline at the MAX IV Laboratory called MicroMAX with 255 million DKK.

MicroMAX has been proposed by the Swedish and Danish research community and will depend on close collaboration with user groups in developing the methods that will be used at MicroMAX. The group of Professor Richard Neutze at the University of Gothenburg has pioneered the research in this area.

– Looking back, I note that in November 2006 MicroMAX was priority #2 in the Swedish Research Council evaluation of the proposal to construct MAX IV Laboratory, says Richard Neutze. Now we have a construction and build-up of the beamline also stretching more than a decade. For the MAX IV project as a whole this is a hugely important decision, to get this level of support from a Danish Foundation. I believe that MicroMAX will be one of the major flagship projects for MAX IV Laboratory. Now we just have to build it, operate it and do some great science…. the fun bit!

>Read more on the MAX IV website