Discovery may improve cystic fibrosis treatment

A University of Saskatchewan medical research team has made a groundbreaking finding with potential to lead to more effective, longer-lasting and better-tolerated treatments for cystic fibrosis (CF).

“Though we’re still at an early stage for developing new treatments, this is a major discovery of considerable potential relevance to CF patients,” said Dr. Juan Ianowski (PhD), a physiologist at the USask College of Medicine and senior author of a paper on the finding published today in the online Nature Research journal Scientific Reports.
For over 20 years, doctors have treated CF patients with an inhaled concentrated salt solution called hypertonic saline to increase the volume of airway surface liquid (ASL)—a microscopically thin liquid lining that helps remove infected secretions from the clogged chest of a CF patient. The scientific consensus has been that an osmotic reaction drawing water from the blood was responsible for the beneficial increase in ASL from this saline treatment.
But by using synchrotron imaging at the Canadian Light Source (CLS), the national research facility at USask, the nine-member team has concluded that scientists have not completely understood the body’s reaction to the saline treatment.
>Read more on the Canadian Light Source website

Image: Dr. Julian Tam (MD) and Dr. Juan Ianowski (PhD) are researchers with the university’s Respiratory Research Centre.

The quest for better medical imaging at MAX IV

Advances in the world of physics often quickly lead to advances in the world of medical diagnostics. From the moment Wilhelm Röntgen discovered X-rays he was using them to look through his wife’s hand.

A lot of the physics principles at the foundation of MAX IV are also at the foundation of medical imaging technologies such as nuclear magnetic resonance imaging, x-ray computed tomography and positron emission tomography.
Positron emission spectroscopy is more commonly known as PET imaging. It’s a method used to study metabolic processes in the body as a research tool but also to diagnose disease. An important use today is in the diagnosis of metastases in cancer patients, but it can also be used to diagnose certain types of dementia.

In PET, a positron-emitting radionuclide is injected into a patient and travels around the body until it accumulates somewhere, depending on the chemical composition. For example, the fluorine-18 radionuclide when bound to deoxyglucose accumulates in metabolically active cells which is useful for finding metastases. The radionuclide is unstable and emits positrons which is the antimatter equivalent of an electron. When a positron and an electron inevitably meet, they annihilate one another, producing two pulses of gamma radiation traveling in opposite directions. By placing a detector around a patient, it is possible to measure the gamma radiation and convert the signal into something that can be more easily measured. These detectors are made up of materials known as scintillators which take high energy radiation and emit lower energy radiation that can be detected using fast photodetectors – photomultiplier tubes.

>Read more on the MAX IV Laboratory website