Nanoparticles made from marine polymers for cutaneous drug delivery applications

A research led by the University of Porto in collaboration with the ALBA Synchrotron has studied for the first time the interaction of nanoparticles with the skin, using synchrotron light at the MIRAS beamline. The findings unveil the role of the different skin components and the mechanism of the permeation enhancement conferred with nanoparticles, made from marine polymers. A nano delivery system application in the skin will reduce the dosage needed due to controlled drug delivery and allow newer and better-targeting therapeutic strategies towards cutaneous administration.

Cutaneous drug delivery allows the administration of therapeutic and cosmetic agents through the skin. Advantages of this administration route include high patient compliance, avoidance of high concentration levels of the drug when reaching systemic circulation, and far fewer side effects compared to other administration routes.

Still, the peculiar skin structure assures protection to the human organism and hampers drug delivery. To overcome this issue, skin permeation enhancers, such as nanoparticles, can be used. They are pharmacologically inactive molecules that can increase skin permeability by interacting with the stratum corneum, the first layer of the epidermis, which is the outermost layer of the skin. However, the mechanisms of nanoparticles’ interaction with the skin structure are still unknown.

A research project led by the University of Porto (Portugal) in collaboration with the ALBA Synchrotron has studied for the first time the interaction of polymeric nanoparticles with the skin, using synchrotron light.

Read more on the ALBA website

Image: Nanoparticles made visible on human skin – 3D Rendering

Credit: Adobe Stock

Delivering drugs using nanocrystals

Monash University researchers have used advanced techniques at ANSTO to investigate the production of new, elongated polymer nanocapsules with a high payload of drug nanocrystals to potentially increase drug targetability, and also decrease dosage frequency and side effects.

This method had not been investigated previously and represents a pioneering method of investigation in the field of colloidal science applications for drug delivery.

Nanoparticles have been used to increase the delivery efficiency of cancer therapy because of their biocompatibility, versatility and the easiness of functionalisation.

The team engineered novel elongated polymer nanocapsules, which are unlike the more well-known spherical nanocapsules.

The elongated polymer nanocapsules were made with elongated liposomes or surfactant vesicles and used drug nanocrystals as a template. 

The results provided strong evidence that the elongated structure could be retained, and also confirmed that the loading method to form rod-like drug nanocrystals inside liposomes was a practical solution.

The combination of the high drug payload, in the form of encapsulated nanocrystals, and the non-spherical feature of liposomes represented a more efficient delivery system.

Spherical hollow nanocapsules have been studied extensively, but the formation of elongated nanocapsules containing active pharmaceuticals as therapeutic agents has been previously largely unsuccessful. 

Read more on the ANSTO website

Image: Elongated nanocapsules can be prepared by polymerisation at the surface of elongated liposome templates with drug nanocrystals