Scientists discover material ideal for smart photovoltaic windows

Berkeley Lab researchers make thermochromic windows with perovskite solar cell

Smart windows that are transparent when it’s dark or cool but automatically darken when the sun is too bright are increasingly popular energy-saving devices. But imagine that when the window is darkened, it simultaneously produces electricity. Such a material – a photovoltaic glass that is also reversibly thermochromic – is a green technology researchers have long worked toward, and now, scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated a way to make it work.

Researchers at Berkeley Lab, a Department of Energy (DOE) national lab, discovered that a form of perovskite, one of the hottest materials in solar research currently due to its high conversion efficiency, works surprisingly well as a stable and photoactive semiconductor material that can be reversibly switched between a transparent state and a non-transparent state, without degrading its electronic properties.

>Read more on the Advanced Light Source website

Image Credit: iStock


Surprising Discovery Could Lead to Better Batteries

Scientists have observed how lithium moves inside individual nanoparticles that make up batteries. The finding could help companies develop batteries that charge faster and last longer

UPTON, NY – A collaboration led by scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has observed an unexpected phenomenon in lithium-ion batteries—the most common type of battery used to power cell phones and electric cars. As a model battery generated electric current, the scientists witnessed the concentration of lithium inside individual nanoparticles reverse at a certain point, instead of constantly increasing. This discovery, which was published on January 12 in the journal Science Advances, is a major step toward improving the battery life of consumer electronics.

“If you have a cell phone, you likely need to charge its battery every day, due to the limited capacity of the battery’s electrodes,” said Esther Takeuchi, a SUNY distinguished professor at Stony Brook University and a chief scientist in the Energy Sciences Directorate at Brookhaven Lab. “The findings in this study could help develop batteries that charge faster and last longer.”


>Read more on the NSLS-II website

Picture: Brookhaven scientists are shown at the Condensed Matter Physics and Materials Science Department’s TEM facility, where part of the study was conducted. Pictured from left to right are Jianming Bai, Feng Wang, Wei Zhang, Yimei Zhu, and Lijun Wu.



Electrical hiding of magnetic information

Results have been published in Sientific Reports.

Researchers have proved the ability of peculiar magnetic materials to hide magnetic information and reveal it under certain conditions and at room temperature.

Since the 1950’s, magnetic materials have been used to store all kinds of information. Magnetically stored information is convenient because it is easily accessible using very well-known magnetic data reading procedures. However, sensitive information must be carefully stored to ensure confidentiality; thus easy access becomes a bad instead of a good feature. The optimal way to prevent unauthorised information access is to make it invisible.

>Read more on the ALBA website

Bing-Joe Hwang received National Chair Professorship from Ministry of Education

Exceptional award for this NSRRC User

The Ministry of Education recently announced the recipients of the 21st National Chair Professorships and the 61st Academic Awards. Prof. Bing-Joe Hwang, a long-term user of NSRRC, was given the National Chair Professorship in the category of Engineering and Applied Sciences. Prof. Hwang is a Chair Professor in Chemical Engineering at National Taiwan University of Science and Technology. He is also an adjunct scientist of NSRRC. His research interests include electrochemistry, nanomaterials, nanoscience, fuel cells, lithium ion batteries, solar cells, sensors, and interfacial phenomena.


Fuel cell X-Ray study details effects of temperature and moisture on performance

Experiments at Berkeley Lab’s Advanced Light Source help scientists shed light on fuel-cell physics

Like a well-tended greenhouse garden, a specialized type of hydrogen fuel cell – which shows promise as a clean, renewable next-generation power source for vehicles and other uses – requires precise temperature and moisture controls to be at its best. If the internal conditions are too dry or too wet, the fuel cell won’t function well.

But seeing inside a working fuel cell at the tiny scales relevant to a fuel cell’s chemistry and physics is challenging, so scientists used X-ray-based imaging techniques at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and Argonne National Laboratory to study the inner workings of fuel-cell components subjected to a range of temperature and moisture conditions.

The research team, led by Iryna Zenyuk, a former Berkeley Lab postdoctoral researcher now at Tufts University, included scientists from Berkeley Lab’s Energy Storage and Distributed Resources Division and the Advanced Light Source (ALS), an X-ray source known as a synchrotron.

>Read More on the ALS website

Image: This animated 3-D rendering (view larger size), generated by an X-ray-based imaging technique at Berkeley Lab’s Advanced Light Source, shows tiny pockets of water (blue) in a fibrous sample. The X-ray experiments showed how moisture and temperature can affect hydrogen fuel-cell performance.
Credit: Berkeley Lab

Solar hydrogen production by artificial leafs

Scientists analysed how a special treatment improves cheap metal oxide photoelectrodes

Metal oxides are promising candidates for cheap and stable photoelectrodes for solar water splitting, producing hydrogen with sunlight. Unfortunately, metal oxides are not highly efficient in this job. A known remedy is a treatment with heat and hydrogen. An international collaboration has now discovered why this treatment works so well, paving the way to more efficient and cheap devices for solar hydrogen production.

The fossil fuel age is bound to end, for several strong reasons. As an alternative to fossil fuels, hydrogen seems very attractive. The gas has a huge energy density, it can be stored or processed further, e. g. to methane, or directly provide clean electricity via a fuel cell. If it is produced using sunlight alone, hydrogen is completely renewable with zero carbon emissions.

>Read More