A transnational collaborative research team, comprising Jeng-Lung Chen, Assistant Scientist, Yu-Chun Chuang, Associate Scientist, and Chung-Kai Chang, Research Assistant from the National Synchrotron Radiation Research Center (NSRRC) under the purview of the National Science and Technology Council, in partnership with Dr. Lu-Ning Chen, Professor Gabor A. Somorjai, and Dr. Ji Su from the Lawrence Berkeley National Laboratory in California, USA, has dedicated three years to pioneering global advancements in the field of green hydrogen production. Their groundbreaking work centers around the development of a methane pyrolysis catalyst, known as the “nickel-molybdenum-bismuth liquid alloy (NiMo-Bi),” which exhibits high hydrogen production efficiency, excellent stability, and low energy consumption. This study explored the electrostatic charge distribution on the active nickel sites in the molten state, demonstrating the NiMo-Bi liquid alloy’s capability to effectively mitigate the cage effect caused by bismuth. This mitigation facilitates the effective flow of methane to active nickel sites, resulting in efficient hydrogen generation. This outstanding discovery was published in the respected international journal Science on August 25, 2023, emerging as a pivotal driving force for advancing the transition to a net-zero future.
The U.S. research team initially integrated molybdenum into the nickel-bismuth catalyst, resulting in the creation of an innovative catalyst known as NiMo-Bi liquid alloy. Meanwhile, NSRRC scientists engineered an experimental setup tailored for in-situ high-temperature gas-phase reactions. Harnessing the capabilities of the “Quick X-ray Absorption Spectroscopy Beamline” and the “High Resolution Powder X-ray Diffraction Beamline” at the Taiwan Photon Source (TPS), the team validated the catalyst’s efficacy by significantly lowering methane pyrolysis temperatures to values as low as 450 °C. They also showed that at an elevated temperature of 800 °C, the selectivity of converting methane into hydrogen reached 100%, maintaining this optimal level for a stable period of 120 hours. This achievement marks a nearly 37-fold improvement in hydrogen production efficiency compared to previous methods. Concurrently, the optimal pyrolysis temperature was significantly reduced from 1065 degrees Celsius to 800 degrees Celsius, resulting in a significant reduction in the energy requirements of the conversion process.
Read more on the NSRRC website
Image: Quick X-ray Absorption Spectroscopy Beamline