SARS-CoV-2 protein caught severing critical immunity pathway

Powerful X-rays from SLAC’s synchrotron reveal that our immune system’s primary wiring seems to be no match for a brutal SARS-CoV-2 protein.

BY DAVID KRAUSE

Over the past two years, scientists have studied the SARS-CoV-2 virus in great detail, laying the foundation for developing COVID-19 vaccines and antiviral treatments. Now, for the first time, scientists at the Department of Energy’s SLAC National Accelerator Laboratory have seen one of the virus’s most critical interactions, which could help researchers develop more precise treatments.

The team caught the moment when a virus protein, called Mpro, cuts a protective protein, known as NEMO, in an infected person. Without NEMO, an immune system is slower to respond to increasing viral loads or new infections. Seeing how Mpro attacks NEMO at the molecular level could inspire new therapeutic approaches.

To see how Mpro cuts NEMO, researchers funneled powerful X-rays from SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) onto crystallized samples of the protein complex. The X-rays struck the protein samples, revealing what Mpro looks like when it dismantles NEMO’s primary function of helping our immune system communicate.

“We saw that the virus protein cuts through NEMO as easily as sharp scissors through thin paper,” said co-senior author Soichi Wakatsuki, professor at SLAC and Stanford. “Imagine the bad things that happen when good proteins in our bodies start getting cut into pieces.”

The images from SSRL show the exact location of NEMO’s cut and provide the first structure of SARS-CoV-2 Mpro bound to a human protein.

“If you can block the sites where Mpro binds to NEMO, you can stop this cut from happening over and over,” SSRL lead scientist and co-author Irimpan Mathews said. “Stopping Mpro could slow down how fast the virus takes over a body. Solving the crystal structure revealed Mpro’s binding sites and was one of the first steps to stopping the protein.”

The research team from SLAC, DOE’s Oak Ridge National Laboratory, and other institutions published their results today in Nature Communications.

Read more on the SLAC website

Antibody rigidity regulates immune activity

Scientists at the University of Southampton have gained unprecedented new insight into the key properties of an antibody needed to stimulate immune activity to fight off cancer, using the ESRF’s structural biology beamlines, among others.

The interdisciplinary study, published in Science Immunology, revealed how changing the flexibility of the antibody could stimulate a stronger immune response. The findings have enabled the team to design antibodies to activate important receptors on immune cells to “fire them up” and deliver more powerful anti-cancer effects. The researchers believe their findings could pave the way to improve antibody drugs that target cancer, as well as automimmune diseases.

In the study, the team investigated antibody drugs targeting the receptor CD40 for cancer treatment. Clinical development has been hampered by a lack of understanding of how to stimulate the receptors to the right level. The problem being that if antibodies are too active they can become toxic. Previous research by the same team had shown that a specific type of antibody called IgG2 is uniquely suited as a template for pharmaceutical intervention, since it is more active than other antibody types. However, the reason why it is more active had not been determined. What was known, however, is that the structure between the antibody arms, the so called hinges, changes over time.

This latest research harnesses this property of the hinge and explains how it works: the researchers call this process “disulfide-switching”. In their study, the team analysed the effect of modifying the hinge and used a combination of biological activity assays, structural biology, and computational chemistry to study how disulfide switching alters antibody structure and activity.

Read more on the ESRF website

Image: Flexibility of the monoclonal antibody F(ab) arms is conferred by the hinge region disulphide structure

Credit: C. Orr

 Understanding how the HIV virus evades immune surveillance

About 36 million people have died from AIDS-related illnesses and approximately 38 million people globally are living with HIV.

Dr. Jonathan Cook, a resident physician specializing in medical microbiology at the University of Toronto, is investigating key proteins on the HIV virus that are crucial to developing an effective vaccine.

“These proteins are so interesting because they are necessary for a virus to infect a human,” said Cook. “By blocking their function, we can avert the kinds of infections that you see routinely.”

He and Adree Khondker in the lab of Prof. Jeffrey E. Lee from the Temerty Faculty of Medicine published a paper in Communications Biology that reveals new information on how the HIV virus interacts with immune systems.

Using the CMFC beamline at the Canadian Light Source at the University of Saskatchewan, the research team analyzed the outer proteins on the HIV virus. They discovered that an area of one protein acts as a decoy — diverting the immune system’s response towards a false target.

This tactic allows the virus to successfully infect human cells and to cause disease.

“The immune system recognizes this sequence on the virus, which is usually a good thing. But, in this situation, the antibodies that the immune system makes don’t protect you from infection,” Cook said.

With the help of the CLS, the researchers confirmed that this decoy area on the HIV protein shapeshifts to entice an ineffective immune response.

Read more on the CLS website

Image: Micrographs of crystals from this project that were diffracted at CLS

Insights into coronavirus proteins using SAXS

A collaboration led by researchers from the European Molecular Biology Laboratory (EMBL) used small angle X-ray scattering (SAXS) at the European XFEL and obtained interesting data on samples containing coronavirus spike proteins including proteins of the isolated receptor biding domain. The results can, for example, help investigate how antibodies bind to the virus. This gives researchers a new tool that may improve understanding of our bodies’ immune response to coronavirus and help to develop medical strategies to overcome COVID-19

SAXS is a powerful technique as it allows researchers to gain insights into protein shape and function at the micro- and nanoscales. The technique has proven to be extremely useful in investigating macromolecular structures such as proteins, especially because it removes the need to crystallize these samples. This means researchers can study the sample in its native form under physiological conditions under which biological reactions occur.

Read more on the European XFEL website

Image: Seen here, the instrument SPB/SFX, where the SAXS experiment was carried out. Using this instrument researchers can study the three-dimensional structures of biological objects. Examples are biological molecules including crystals of macromolecules and macromolecular complexes as well as viruses, organelles, and cells.

Credit: European XFEL / Jan Hosan