Extremely small magnetic nanostructures with invisibility cloak

Future data storage technology

In novel concepts of magnetic data storage, it is intended to send small magnetic bits back and forth in a chip structure, store them densely packed and read them out later. The magnetic stray field generates problems when trying to generate particularly tiny bits. Now, researchers at the Max Born Institute (MBI), the Massachusetts Institute of Technology (MIT) and DESY were able to put an “invisibility cloak” over the magnetic structures. In this fashion, the magnetic stray field can be reduced, allowing for small yet mobile bits. The results were published in Nature Nanotechnology.

For physicists, magnetism is intimately coupled to rotating motion of electrons in atoms. Orbiting around the atomic nucleus as well as around their own axis, electrons generate the magnetic moment of the atom. The magnetic stray field associated with that magnetic moment is the property we know from e.g. a bar magnet we use to fix notes on pinboard. It is also the magnetic stray field that is used to read the information from a magnetic hard disk drive. In today’s hard disks, a single magnetic bit has a size of about 15 x 45 nanometer, about of those would fit on a stamp.

One vision for a novel concept to store data magnetically is to send the magnetic bits back and forth in a memory chip via current pulses, in order to store them at a suitable place in the chip and retrieve them later. Here, the magnetic stray field is a bit of a curse, as it prevents that the bits can be made smaller for even denser packing of the information. On the other hand, the magnetic moment underlying the stray field is required to be able to move the structures around.

>Read more on the PETRA III at DESY website

Credit: MIT, L. Caretta/M. Huang [Source]

X-Rays Reveal ‘Handedness’ in Swirling Electric Vortices

Scientists at Berkeley Lab study exotic material’s properties, which could make possible a new form of data storage

Scientists used spiraling X-rays at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) to observe, for the first time, a property that gives handedness to swirling electric patterns – dubbed polar vortices – in a synthetically layered material.

Read more on the Berlekely Lab website

Image: This diagram shows the setup for the X-ray experiment that explored chirality, or handedness, in a layered material. The blue and red spirals at upper left show the X-ray light that was used to probe the material. The X-rays scattered off of the layers of the material (arrows at upper right and associated X-ray images at top), allowing researchers to measure chirality in swirling electrical vortices within the material. (Credit: Berkeley Lab)

Time – and spatially – resolved magnetization dynamics driven by spin-orbit torques

There is a strong correlation between the rise of a civilization and writing. The so-called Information Age developed in parallel with the ability to write, store, and process large amounts of digital data. To keep pace with the increasing demand for data of our days, not only the size but also the speed of digital memories must increase dramatically, while keeping the energy consumption at reasonable levels. In order to achieve that, we must learn to write anew.

>Read More on the PSI website

Image: Magnetisation switching of a 500 nm diameter Pt/Co/AlOx disc.