New SLAC-Stanford Battery Center targets roadblocks to a sustainable energy transition

The center at SLAC aims to bridge the gaps between discovering, manufacturing and deploying innovative energy storage solutions. 

The Department of Energy’s SLAC National Accelerator Laboratory and Stanford University today announced the launch of a new joint battery center at SLAC. It will bring together the resources and expertise of the national lab, the university and Silicon Valley to accelerate the deployment of batteries and other energy storage solutions as part of the energy transition that’s essential for addressing climate change.

A key part of this transition will be to decarbonize the world’s transportation systems and electric grids ­– to power them without fossil fuels. To do so, society will need to develop the capacity to store several hundred terawatt-hours of sustainably generated energy. Only about 1% of that capacity is in place today.

Filling the enormous gap between what we have and what we need is one of the biggest challenges in energy research and development. It will require that experts in chemistry, materials science, engineering and a host of other fields join forces to make batteries safer, more efficient and less costly and manufacture them more sustainably from earth-abundant materials, all on a global scale. 

The SLAC-Stanford Battery Center will address that challenge. It will serve as the nexus for battery research at the lab and the university, bringing together large numbers of faculty, staff scientists, students and postdoctoral researchers from SLAC and Stanford for research, education and workforce training. 

 “We’re excited to launch this center and to work with our partners on tackling one of today’s most pressing global issues,” said interim SLAC Director Stephen Streiffer. “The center will leverage the combined strengths of Stanford and SLAC, including experts and industry partners from a wide variety of disciplines, and provide access to the lab’s world-class scientific facilities. All of these are important to move novel energy storage technologies out of the lab and into widespread use.”

Expert research with unique tools

Research and development at the center will span a vast range of systems – from understanding chemical reactions that store energy in electrodes to designing battery materials at the nanoscale, making and testing devices, improving manufacturing processes and finding ways to scale up those processes so they can become part of everyday life. 

“It’s not enough to make a game-changing battery material in small amounts,” said Jagjit Nanda, a SLAC distinguished scientist, Stanford adjunct professor and executive director of the new center, whose background includes decades of battery research at DOE’s Oak Ridge National Laboratory. “We have to understand the manufacturing science needed to make it in larger quantities on a massive scale without compromising on performance.”

Longstanding collaborations between SLAC and Stanford researchers have already produced many important insights into how batteries work and how to make them smaller, lighter, safer and more powerful. These studies have used machine learning to quickly identify the most promising battery materials from hundreds made in the lab, and measured the properties of those materials and the nanoscale details of battery operation at the lab’s synchrotron X-ray facility. SLAC’s X-ray free-electron laser is available, as well, for fundamental studies of energy-related materials and processes. 

SLAC and Stanford also pioneered the use of cryogenic electron microscopy (cryo-EM), a technique developed to image biology in atomic detail, to get the first clear look at finger-like growths that can degrade lithium-ion batteries and set them on fire. This technique has also been used to probe squishy layers that build up on electrodes and must be carefully managed, in research performed at the Stanford Institute for Materials and Energy Sciences (SIMES).

Nanda said the center will also focus on making energy storage more sustainable, for instance by choosing materials that are abundant, easy to recycle and can be extracted in a way that’s less costly and produces fewer emissions.

Read more on the SLAC website

Modelling electrochemical potential for better Li-batteries

To understand the electrochemical potential of lithium-ion batteries, it’s important to decipher the chemical processes at electrode interfaces occurring during device activity. Using HIPPIE beamline, a research group investigated and modelled the influence of electrochemical potential differences in operando in these batteries.

“With our experiments at HIPPIE, we had the opportunity to look at battery materials and interface reactions under operating conditions exploring the capabilities of the electrochemical setup at the end station,” said Julia Maibach, study author and professor at the Institute for Applied Materials – Energy Storage Systems at Karlsruhe Institute of Technology (KIT) in Germany. “We were among the first users testing the electrochemical set up including the glove box for inert sample transfer.”

Why study electrochemical potential difference in batteries? This phenomenon drives the transfer of charged particles to different phases in redox reactions at battery electrode-electrolyte interfaces. In simple terms, the difference enables the chemical reaction necessary for Li-ion battery function.

Read more on the MAX IV website

Image: Research group studies gold and copper model electrodes at MAX IV’s HIPPIE beamline with Ambient Pressure Photoelectron Spectroscopy (APPES) during lithiation

Credit: MAX IV Laboratory

Efficient production technique for a novel ‘green’ fertiliser

Advanced milling technique produces slow-release soil nutrient crystals

A purely mechanical method can produce a novel, more sustainable fertiliser in a less polluting way. That is the result of a method optimised at DESY’s light source PETRA III. An international team used PETRA III to optimise the production method that is an adaptation of an ancient technique: by milling two common ingredients, urea and gypsum, the scientists produce a new solid compound that slowly releases two chemical elements critical to soil fertilisation, nitrogen, and calcium. The milling method is rapid, efficient, and clean—as is the fertiliser product, which has the potential to reduce the nitrogen pollution that fouls water systems and contributes to climate change. The scientists also found that their process is scalable; therefore, it could be potentially implemented industrially. The results by scientists from DESY; the Ruđer Bošković Institute (IRB) in Zagreb, Croatia; and Lehigh University in the USA have been published in the journal Green Chemistry. The new fertiliser still needs to be tested in the field.

For several years, scientists from DESY and IRB, have been collaborating to explore the fundamentals of mechanical methods for initiating chemical reactions. This method of processing, called mechanochemistry, uses various mechanical inputs, such as compressing, vibrating, or, in this case, milling, to achieve the chemical transformation. “Mechanochemistry is quite an old technique,” says Martin Etter, beamline scientist at the P02.1 beamline at PETRA III. “For thousands of years, we’ve been milling things, for example, grain for bread. It’s only now that we’re starting to look at these mechanochemical processes more intensively using X-rays and seeing how we can use those processes to initiate chemical reactions.”

Etter’s beamline is one of the few in the world where mechanochemistry can be routinely performed and analysed using X-rays from a synchrotron. Etter has spent years developing the beamline and working with users to fine-tune methods for analysing and optimising mechanochemical reactions. The result has been a globally renowned experiment setup that has been used in studying many types of reactions important to materials science, industrial catalysis, and green chemistry.

Read more on the DESY website

Image: The co-crystals of the novel fertiliser (symbolised here with gypsum) release their nutrients much more slowly

Credit: DESY, Gesine Born