Lightsource research on SARS-CoV-2

Coronaviruses are a family which includes the common cold, SARS, MERS and the current outbreak of the disease COVID-19, caused by the SARS-CoV-2 virus.
Several facilities of our collaboration have started research about SARS-CoV-2 virus or launched open calls for rapid access. This post will be updated regularly.

Publications on SARS-CoV-2 Rapid Access




Publications

The Canadian Light Source (Canada) has created a specific page highlighting their COVID-19 research: COVID-19 research at the Canadian Light Source

BESSY II at HZB (Germany) has set up a page where it shows their contributions to the research on SARS-CoV-2 , see here

DESY (Germany) has launched a new page dedicated to Corona Research: https://www.desy.de/news/corona_research/index_eng.html

Diamond Light Source (UK) has created a specific website “Coronavirus Science” with platforms for various audiences: scientific community, general public and the media: https://www.diamond.ac.uk/covid-19.html

ELETTRA (Italy) has launched a new page dedicated to COVID-19 research: https://www.elettra.eu/science/covid-19-research-at-elettra.html

The Photon Division of PSI (Switzerland) have collated many information linked to their institute on coronavirus-relevant research (recent publications, rapid access…): https://www.psi.ch/en/psd/covid-19

ALBA (Spain) has set up a dedicated area on their website for information related to COVID-19 (rapid access, publications etc): https://www.albasynchrotron.es/en/covid-19-information/

The ALS (CA/USA) has created a page listing all COVID-19 related research: https://als.lbl.gov/tag/covid-19/

Published articles

2021.08.11 BESSY II at HZB (Germany) article on their website: HZB coordinates European collaboration to develop active agents against Corona – Helmholtz-Zentrum Berlin (HZB) (helmholtz-berlin.de)

2021.08.10 Canadian Light Source article on their website: Developing antiviral drugs to treat COVID-19 infections

2021.07.06 European XFEL (Germany) article on their website: XFEL: Insights into coronavirus proteins using small angle X-ray scattering

2021.06.21 Diamond Light Source (UK) article on their website: X-ray fluorescence imaging at Diamond helps find a way to improve accuracy of Lateral Flow Tests

2021.06.17 Australian Synchrotron (ANSTO) article on their website: Research finds possible key to long term COVID-19 symptoms

2021.05.11 Swiss Light Source at PSI (Switzerland) article on their website: How remdesivir works against the coronavirus

2021.05.28 SLAC (CA / USA) article from the Stanford Synchrotron Radiation Lightsource (SSRL): Structure-guided Nanobodies Block SARS-CoV-2 Infection | Stanford Synchrotron Radiation Lightsource

2021.05.21 ALS (USA) article on their website: Guiding Target Selection for COVID-19 Antibody Therapeutics

2021.05.21 ESRF (France) article on their website: Combatting COVID-19 with crystallography and cryo-EM (esrf.fr)

2021.05.18 ALS (USA) article on their website: How X-Rays Could Make Reliable, Rapid COVID-19 Tests a Reality | Berkeley Lab (lbl.gov)

2021.04.27 Canadian Light Source (Canada), video on their website Investigating the long-term health impacts of COVID-19 (lightsource.ca)

2021.04.22 Synchrotron Light Research Institute (Thailand), article on their website: SLRI Presented Innovations Against COVID-19 Outbreak to MHESI Minister on His Visit to a Field Hospital at SUT

2021.04.16 Diamond Light Source (UK) article on their website: Massive fragment screen points way to new SARS-CoV-2 inhibitors

2021.04.14 SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL):Researchers search for clues to COVID-19 treatment with help from synchrotron X-rays

2021.04.07 Diamond Light Source (UK), article on their website: First images of cells exposed to COVID-19 vaccine – – Diamond Light Source

2021.04.05 ALS (CA/USA) blog post on Berkeley Lab Biosciences website: New COVID-19 Antibody Supersite Discovered

2021.04.02 PETRA III at DESY (Germany), article and animation on their website DESY X-ray lightsource identifies promising candidate for COVID drugs

2021.03.26 Diamond Light Source (UK), article on their website: New targets for antibodies in the fight against SARS-CoV-2

2021.02.23 Australian Light Source (ANSTO) Australia, article on their website: Progress on understanding what makes COVID-19 more infectious than SARS

2020.12.02 ESRF (France), article and video on their website: ESRF and UCL scientists awarded Chan Zuckerberg Initiative grant for human organ imaging project

2020.11.10 Diamond Light Source (UK), article and video on their website: From nought to sixty in six months… the unmasking of the virus behind COVID-19

2020.10.29 Canadian Light Source (Canada) video on their website: Studying how to damage the COVID-19 virus

2020.10.07 National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA) article on their website: Steady Progress in the Battle Against COVID-19

2020.10.07 Diamond Light Source (UK), article on their website: Structural Biology identifies new information to accelerate structure-based drug design against COVID-19

2020.10.06 MAX IV (Sweden), article on their website: Tackling SARS CoV-2 viral genome replication machinery using X-rays

2020.08.31 SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL): SARS-CoV-2 Spike Protein Targeted for Vaccine

2020.08.27 Diamond Light Source (UK), article on their website: Structural Biology reveals new target to neutralise COVID-19

2020.08.27 Canadian Light Source (Canada) video on their website: Developing more effective drugs

2020.08.25 Australian Synchrotron (ANSTO) (Australia) article on their website: More progress on understanding COVID-19

2020.08.24 DESY (Germany) article on their website: PETRA III provides new insights into COVID-19 lung tissue

2020.08.11 Australian Synchrotron (ANSTO) (Australia) article on their website: Unique immune system of the alpaca being used in COVID-19 research

2020.07.30 Swiss Light Source at PSI (Switzerland) article on their website: COVID-19 research: Anti-viral strategy with double effect

2020.07.29 National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA) article on their website: Ready to join the fight against COVID-19.

2020.07.20 ALBA (Spain) article on their website: A research team from Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC) uses synchrotron light to study the possible effect of an antitumoral drug of clinical use over the viral cycle of SARS-CoV-2 coronavirus. 

2020.07.15 ALS (USA) article on their website: Antibody from SARS Survivor Neutralizes SARS-CoV-2

2020.07.14 Diamond Light Source (UK), article on their website: Engineered llama antibodies neutralise Covid-19 virus

2020.06.17 European XFEL (Germany) article on their website: Pulling Together: A collaborative research approach to study COVID-19

2020.06.15 European XFEL (Germany) article on their website: Open Science COVID19 analysis platform online

2020.06.09 APS at Argonne National Laboratory (USA) article on their website: Novel Coronavirus Research at the Advanced Photon Source

2020.05. Società Italiana di Fisica publishes an article about research done at Elettra Sincrotrone Trieste (Italy) and the Advanced Light Source (CA / USA): Accelerator facilities support COVID-19-related research

2020.05.27 Diamond Light Source (UK), new animation video demonstrating the work that has been done at Diamond’s XChem facilities.

2020.05.19 Advanced Light Source (CA / USA), article about their latest results: X-ray Experiments Zero in on COVID-19 Antibodies

2020.05.15 Swiss Light Source (Switzerland), article about their first MX results: First MX results of the priority COVID-19 call

2020.05.14 MAX VI (Sweden), article about their research: Tackling SARS CoV-2 viral genome replication machinery using X-rays

2020.05.14 CHESS (NY/USA), article: CHESS to restart in June for COVID-19 research

2020.05.14 the LEAPS initiative brings together many of our European members. The initative published this brochure: Research at LEAPS facilities fighting COVID-19

2020.05.12 Diamond Light Source (UK), article about their collaboration in a consortium: UK consortium launches COVID-19 Protein Portal to provide essential reagents for SARS-CoV-2 research

2020.05.11 Advanced Photon Source (IL/USA), article: Studying Elements from the SARS-CoV-2 Virus at the Bio-CAT Beamline

2020.05.07 European XFEL (Germany), article: European XFEL open for COVID-19 related research

2020.05.06 ESRF (France), article: World X-ray science facilities are contributing to overcoming COVID-19

2020.04.29. BESSY II at HZB (Germany), article: Corona research: Consortium of Berlin research and industry seeks active ingredients

2020.04.29. Swiss Light Source and SwissFEL at PSI (Switzerland), interview series on the PSI website: Research on Covid-19

2020.04.23. PETRA III at DESY (Germany), article: X-ray screening identifies potential candidates for corona drugs

2020.04.21. MAX IV (Sweden), article: BioMAX switches to remote operations in times of COVID-19

2020.04.16. SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL): SLAC joins the global fight against COVID-19

2020.04.15 Berkeley National Lab (CA/ USA), article with a focus on the research at the Advanced Light Source (ALS):
Staff at Berkeley Lab’s X-Ray Facility Mobilize to Support COVID-19-Related Research

2020.04.07 Diamond Light Source (UK), article: Call for Chemists to contribute to the fight against COVID-19
Crowdfunding: COVID-19 Moonshot

2020.04.07. ANSTO’s Australian Synchrotron (Victoria), article: Aiding the global research effort on COVID-19

2020.04.06. National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA), article: Brookhaven Lab Mobilizes Resources in Fight Against COVID-19

2020.04.02. BESSY II at HZB (Germany), article: Corona research: Two days of measuring operation to find the right key

2020.03.31 Diamond Light Source (UK), article: Jointly with Exscientia and Scripps Research, Diamond aims to accelerate the search for drugs to treat COVID-19

2020.03.27 Argonne National Laboratory with the Advanced Photon Source (APS) and other facilities on-site (IL / USA), article: Argonne’s researchers and facilities playing a key role in the fight against COVID-19

2020.03.27 ANSTO’s Australian Synchrotron (Victoria), article and video: Helping in the fight against COVID-19

2020.03.25 PETRA III at DESY (Germany), article: Research team will X-ray coronavirus proteins

2020.03.23 Diamond Light Source (UK) releases its first animation explaining: SARS-CoV-2 Mpro Single Crystal Crystallography

2020.03.25 CERN Courrier (Switzerland) article about synchrotron research on SARS-CoV-2, written by Tessa Charles (accelerator physicist at the University of Melbourne currently based at CERN, completed her PhD at the Australian Synchrotron): Synchrotrons on the coronavirus frontline

2020.03.19 BESSY II at Helmholtz-Zentrum Berlin (Germany), research publication: Coronavirus SARS-CoV2: BESSY II data accelerate drug development

2020.03.19 BESSY II at Helmholtz-Zentrum Berlin (Germany), technique explanation webpage: Protein crystallography at BESSY II: A mighty tool for the search of anti-viral agents

2020.03.16 Diamond Light Source (UK), article on their “Coronavirus Science” website: Main protease structure and XChem fragment screen

2020.03.12. Elettra Sincrotrone (Italy), article on their website: New project to fight the spread of Coronavirus has been approved

2020.03.05. Advanced Photon Source (IL / USA), article on their website: APS Coronavirus Research in the Media Spotlight

2020.03.05. Advanced Photon Source (IL / USA), research publication: “Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2,” bioRXiv preprint  DOI: 10.1101/2020.03.02.968388, Article on their website (source: Northwestern University): New Coronavirus Protein Reveals Drug Target




Rapid access

Scientists can apply for rapid access at following facilities (only member facilities of Lightsources.org are referenced, the most recent published (or updated) call is mentioned first).

  • The National Synchrotron Light Source II (NSLS-II) in NY / USA is offering a streamlined and expedited rapid access proposal process for groups that require beam time for structural biology projects directly related to COVID-19. The Center for Biomolecular Structure team is supporting remote macromolecular crystallography experiments at Beamlines 17-ID-1 (AMX) and 17-ID-2 (FMX) in this research area. To submit a macromolecular crystallography proposal for COVID-19 related research, use the following form:
    https://surveys.external.bnl.gov/n/RapidAccessProposal.aspx
  • The Advanced Photon Source (APS) at Argonne National Laboratory in IL / USA  user program is operational to support:

·         Research on SARS-CoV-2 or other COVID-19-related research that addresses the current pandemic.

·         Critical, proprietary pharmaceutical research.

·         Mail-in/remote access work for any research involving low-risk samples and most medium-risk samples (as defined on the APS ESAF form).

·         Limited in situ research (set-up with one person, and ability to carry out majority of experiment safely remotely)
https://www.aps.anl.gov/Users-Information/About-Proposals/Apply-for-Time

PETRA III at DESY in Germany offers also Fast Track Access for Corona-related research:
https://photon-science.desy.de/users_area/fast_track_access_for_covid_19/index_eng.html

Australian Synchrotron at ANSTO makes its macromolecular crystallography beamlines available to structural biologists in response to the COVID-19 pandemic: https://www.ansto.gov.au/user-access

North American DOE lightsource facilities have created a platform to enable COVID-19 research. There you can find ressources and points of contact to request priority access:
Structural Biology Resources at DOE Light Sources

Elettra Sincrotrone Trieste in Italy opens to remote acces following beamlines: XRD1, XRD2, SISSI-BIO and MCX thanks to an CERIC-ERIC initiative:
https://www.ceric-eric.eu/2020/03/10/covid-19-fast-track-access/
http://www.elettra.eu/userarea/user-area.html

The Advanced Light Source (ALS) at LBNL in California / USA has capabilities relevant to COVID-19 and researchers can apply through their RAPIDD mechanism:
https://als.lbl.gov/apply-for-beamtime/

ALBA Synchrotron in Spain offers a COVID-19 RAPID ACCESS on all beamlines:
https://www.albasynchrotron.es/en/en/users/call-information

SOLARIS Synchrotron in Poland gives acces to its Cryo Electron Microscope thanks to an CERIC-ERIC initiative: https://www.ceric-eric.eu/2020/03/10/covid-19-fast-track-access/

Swiss Light Source and Swiss FEL at PSI in Switzerland offer priority access to combating COVID-19:
https://www.psi.ch/en/sls/scientific-highlights/priority-access-call-for-work-on-combating-covid-19

Diamond Light Source in the United Kingdom opened also a call for rapid access:
https://www.diamond.ac.uk/Users.html

Image: Electron density at the active site of the SARS-CoV-2 protease, revealing a fragment bound
Credit: Diamond Light Source

Examining individual neurons from different perspectives

Correlative imaging of a single neuronal cell opens the door to profound multi-perspective sub-cellular examinations

Scientists combined two nano-imaging techniques that stand at opposite ends of the electromagnetic spectrum to demonstrate the benefits of correlative imaging to examine individual neurons from different perspectives.

To showcase this, they studied the molecular structures of amyloid proteins and investigated the role metal ions may play in the development of Alzheimer’s Disease at a previously never achieved resolution. Their detailed observations at the sub-cellular level underscore the potential of using combined nanospectroscopic tools to deal with uncertainties due to the complex nature of a biological sample.

Alzheimer’s Disease is the most common cause of dementia. Many research groups are working to reveal molecular mechanisms to better understand the process by which the disease evolves. Due to the current lack of effective treatments that could stop or prevent Alzheimer’s Disease, new approaches are necessary to find out how people can age without memory loss.

High-resolution microscopy techniques such as electron microscopy and immunofluorescence microscopy are most often used to detect amyloidogenic protein molecules, often considered key factors in the disease’s evolution. However, these commonly used methods generally lack the sensitivity necessary to depict molecular structures. This is why scientists from Lund University in collaboration with SOLEIL and MAX IV carried out a proof of concept study which showcases that combining two imaging modalities can be used as effective tools to assess structural and chemical information directly within a single cell.

Read more on the MAX IV website

Image: a O-PTIR setup: a pulsed, tunable IR laser is guided onto the sample surface (1). b X-ray fluorescence nanoimaging of individual neuronal cells deposited on Si3N4 (1). c Conceptualization of the data analysis based on superimposed optical, O-PTIR, and S-XRF images.

Disorder brings out quantum physical talents

Quantum effects are most noticeable at extremely low temperatures, which limits their usefulness for technical applications. Thin films of MnSb2Te4, however, show new talents due to a small excess of manganese. Apparently, the resulting disorder provides spectacular properties: The material proves to be a topological insulator and is ferromagnetic up to comparatively high temperatures of 50 Kelvin, measurements at BESSY II show.  This makes this class of material suitable for quantum bits, but also for spintronics in general or applications in high-precision metrology.

Quantum effects such as the anomalous quantum Hall effect enable sensors of highest sensitivity, are the basis for spintronic components in future information technologies and also for qubits in quantum computers of the future. However, as a rule, the quantum effects relevant for this only show up clearly enough to make use of them at very low temperatures near absolute zero and in special material systems.

Read more on the HZB website

Image: The Dirac cone is typical for topological insulators and is practically unchanged on all 6 images (ARPES measurements at BESSY II). The blue arrow additionally shows the valence electrons in the volume. The synchrotron light probes both and can thus distinguish the Dirac cone at the surface (electrically conducting) from the three-dimensional volume (insulating).

Credit: © HZB

Activation of order-disorder dynamics in crystalline Buckybowls

Dibenzo[ghi,mno]Fluoranthene, akacorannulene (C20H10), is a peculiar bowl-shaped molecule displaying unusual pentagonal symmetry and building block of the most celebrated Buckminster Fullerene – C60


Its nanostructured arrangement together with the eminent dipole moment of 2.1 Debye and a high electron affinity, make this system largely appealing for its use in energy-related applications, such as in hydrogen storage, ion-batteries, or super-capacitors. Additionally, this molecule has been suggested to be a component of interstellar dusts.   
In this work, published in Carbon, an international group including researchers from Italy, United Kingdom, Spain, and China has brought to the fore the unexpectedly rich thermophysical behaviour of this system in the thermal range 200 – 600 K, not anticipated on the basis of previous studies.


Combining state-of-the-art synchrotron (MCX beamline, Elettra) and neutron (IRIS beamline, ISIS) scattering techniques, together with differential scanning calorimetry (DSC), for the first time a well defined pre-melting transition has been clearly identified starting at about 382 K, well below the melting point of 540 K, resulting in the progressive suppression of molecular and supramolecular order and associated to the emergence of rotor-like states, as highlighted by the decrease in the elastic intensity and the sizeable increase in the quasi-elastic scattering (see Fig 1b– showing a marked separation in temperature between the two regimes).  

Read more on the Elettra website

Image: Figure 1.  (a) Synchrotron powder diffraction and Rietveld refinement of the room temperature average structure of Corannulene. (b) Temperature dependent quasi-elastic (IQE) and elastic (Iel) fractions, highlighting the transition to the dynamic state.

Using science to make the best chocolate yet

Scientists used synchrotron technology to show a key ingredient can create the ideal chocolate structure and could revolutionize the chocolate industry.

Structure is key when it comes creating the best quality of chocolate. An ideal internal structure will be smooth and continuous, not crumbly, and result in glossy, delicious, melt-in-your-mouth decadence. However, this sweet bliss is not easy to achieve.

Researchers from the University of Guelph had their first look at the detailed structure of dark chocolate using the Canadian Light Source (CLS) at the University of Saskatchewan. Their results were published today in Nature Communications.

“One of the major problems in chocolate making is tempering,” said Alejandro Marangoni, a professor at the University of Guelph and Canada Research Chair in Food, Health and Aging. “Very much like when you temper steel, you have to achieve a certain crystalline structure in the cocoa butter.”

Skilled chocolate makers use specialized tools and training to manipulate cocoa butter for gourmet chocolate. However, Marangoni wondered if adding a special ingredient to chocolate could drive the formation of the correct crystal structure without the complex cooling and mixing procedures typically used by chocolatiers during tempering.

Read more on the Canadian Light Source website

Image: Dr. Saeed Ghazani tempering chocolate. Dept. Food Science University of Guelph.

A new approach creates an exceptional single-atom catalyst for water splitting

Anchoring individual iridium atoms on the surface of a catalytic particle boosted its performance in carrying out a reaction that’s been a bottleneck for sustainable energy production.

A new way of anchoring individual iridium atoms to the surface of a catalyst increased its efficiency in splitting water molecules to record levels, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University reported today.

It was the first time this approach had been applied to the oxygen evolution reaction, or OER ­–part of a process called electrolysis that uses electricity to split water into hydrogen and oxygen. If powered by renewable energy sources, electrolysis could produce fuels and chemical feedstocks more sustainably and reduce the use of fossil fuels. But the sluggish pace of OER has been a bottleneck to improving its efficiency so it can compete in the open market.

The results of this study could ease the bottleneck and open new avenues to observing and understanding how these single-atom catalytic centers operate under realistic working conditions, the research team said.

They published their results today in the Proceedings of the National Academy of Sciences.

Read more on the SLAC website

Image: An illustration depicts a new system developed at SLAC and Stanford that anchors individual iridium atoms to the surface of a catalyst, increasing its efficiency at splitting water to record levels. The eight-sided support structures, shaded in blue, each contain a single iridium atom (large blue spheres). The iridium atoms grab passing water molecules (floating above and to the left of them), and encourage them to react with each other, releasing oxygen molecules (above and to the right). This reaction, known as the oxygen evolution reaction or OER, plays a key role in producing sustainable fuels and chemicals.

Credit: Greg Stewart/SLAC National Accelerator Laboratory

A powerful infrared technique broadens its horizons

Infrared light has the right energy range to probe many interesting material properties, including the vibrational modes of molecules and the way electrons interact with external photons. As devices get smaller and faster, the ability to study the way light and matter interact at the nanoscale will become crucial for the development of quantum and microelectronic technologies.

A powerful infrared method for probing such phenomena is called scattering-type scanning near-field optical microscopy (s-SNOM), which uses the tip of an atomic force microscope (AFM) to focus infrared light down to about 10 nm, below the wavelength of the light itself (i.e., below the diffraction limit). However, because of the elongated geometry of the AFM tip, oriented perpendicular to the sample, s-SNOM is less sensitive to features of interest that lie parallel to the sample surface.

“Probing in-plane responses at the subwavelength scale has been a long-time hurdle for the technique,” said Ziheng Yao, a former ALS doctoral fellow and co-first author of a Nature Communications paper that reports on a way around this hurdle. “With our results, we can get not only the the top view of the object, but also the side views.”

At ALS Beamline 2.4, the researchers used s-SNOM to study samples of sapphire and LiNbO3, two well-characterized, prototypical materials suitable for a proof-of-concept demonstration. Both have a property (the dielectric function) that varies along different in-plane crystal axes.

Read more on the ALS website

Image: Schematic of the s-SNOM nanospectroscopy setup and the crystal orientation of the sample (a, b, and c axes). Red arrow indicates the in-plane component of the incident light, kin-plane. Rotating the sample changes θ, the angle between kin-plane and the c-axis. Inset: Image of the gold disk on sapphire (m-cut Al2O3). Sdark and Sbright are the two locations were spectra were collected. Scale bar = 1 µm.

Credit: Xinzhong Chen and Ziheng Yao/Stony Brook University

Nanobodies against SARS-CoV-2

Göttingen researchers have developed nanobodies – a type of antibodies – that efficiently block the coronavirus SARS-CoV-2 and its new variants. Those nanobodies, which originate from alpacas inoculated with part of the SARS-CoV-2 virus spike protein – the receptor-binding domain that the virus deploys for invading host cells – could serve as a potent drug against COVID-19. The researchers used the X10SA crystallography beamline at the Swiss Light Source to characterize the interaction between the nanobodies and the coronavirus spikes at the molecular level.


Unlike antibodies, nanobodies can be produced on an industrial scale and at a low cost and therefore meet the global demand for COVID-19 therapeutics. The new nanobodies, which can bind and neutralize the virus up to 1000 times better than previously developed antibodies, are currently in preparation for clinical trials.

Read more on the PSI website

Image: The figure shows how two of the newly developed nanobodies (blue and magenta) bind to the receptor-binding domain (green) of the coronavirus spike protein (grey), thus preventing infection with SARS-CoV-2 and its variants.

Credit: Thomas Güttler / Max Planck Institute for Biophysical Chemistry

One year of ESRF-EBS

One year ago, the ESRF switched on its Extremely Brilliant Source (EBS), a revolutionary new high-energy, fourth-generation synchrotron light source, a €150m project over 2015-2022 funded by ESRF’s 22 partner countries.

An accelerator physics dream saw the light with the launch of the world’s brightest synchrotron source, ESRF-EBS, inspiring many constructions and upgrades of synchrotron light sources around the world. Thanks to its enhanced performances, EBS has opened new vistas for X-rays science, enabling scientists to bring X-ray science into research domains and applications that could not have been imagined a few years ago, and providing invaluable new insight into the microscopic and atomic structure of living matter and materials in all their complexity.

Today, the ESRF celebrates one year of user operation of EBS and one year of exciting new science. “Europe can be proud of this masterpiece of state-of-the-art technology and scientific vision,” says Helmut Dosch, Chair of the ESRF Council.

Read more on the ESRF website

Image: Exterior view of the ESRF-EBS in Grenoble, France

Credit: ESRF

Metal pollutants cause metabolic alterations in algae

Contamination by metals like cadmium or mercury is considered a serious threat to the environment and human health. Several human activities such as mining, metallurgy industry, and extensive use of mineral fertilizers are the main sources of ongoing metal pollution in numerous ecosystems. This environmental risk is potentiated by bioaccumulation and trophic chain biomagnification phenomena, which are associated with the long persistence of toxic metals in the polluted ecosystems. Aquatic and soil ecosystems affected by runoffs loaded with toxic metals are particularly vulnerable, where primary producers photosynthetic organisms (phytoplankton and soil microalgae) represent the first stage of pollution build-up. Knowledge about mechanisms of toxicity in these organisms is essential for appropriate assessment of environmental risks.

Researchers from the Plant Physiology Laboratory of the Department of Biology, also affiliated with the Research Centre for Biodiversity and Global Change, at the Autonomous University of Madrid (UAM), have discovered the major changes of biomolecules caused by cadmium and mercury in the model green microalga Chlamydomonas reinhardtii.

The use of synchrotron technology at MIRAS beamline was a valuable tool and has made it possible to analyze in detail variations in the biomolecular pattern caused by heavy metals at levels of resolution rarely described before. “Among the cellular components that readily changed upon metal treatments, we detected alterations in the lipid composition by synchrotron light infrared spectroscopy at ALBA, which corresponded to accumulation of neutral lipids and increased fatty unsaturation” specifies Ángel Barón, scientist at UAM.

Read more on the ALBA website

Image: Electron transmission microscopy of Chlamydomonas reinhardtii cells to show alterations caused by cadmium and mercury. The pyrenoid (p) looks aberrant, with proliferation of lipid vesicles (green arrowhead) and starch grains (s). Metals also triggered the appearance of autophagy vesicles (red arrowhead). Right: image of Chlamydomonas reinhardtii 

Credit: image of Chlamydomonas reinhardtii  Wikimedia Commons.

Scientists capture a ‘quantum tug’ between neighbouring water molecules

The work sheds light on the web of hydrogen bonds that gives water its strange properties, which play a vital role in many chemical and biological processes.

Water is the most abundant yet least understood liquid in nature. It exhibits many strange behaviors that scientists still struggle to explain. While most liquids get denser as they get colder, water is most dense at 39 degrees Fahrenheit, just above its freezing point. This is why ice floats to the top of a drinking glass and lakes freeze from the surface down, allowing marine life to survive cold winters. Water also has an unusually high surface tension, allowing insects to walk on its surface, and a large capacity to store heat, keeping ocean temperatures stable.

Now, a team that includes researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Stanford University and Stockholm University in Sweden have made the first direct observation of how hydrogen atoms in water molecules tug and push neighbouring water molecules when they are excited with laser light. Their results, published in Nature today, reveal effects that could underpin key aspects of the microscopic origin of water’s strange properties and could lead to a better understanding of how water helps proteins function in living organisms.

Read more on the LCLS website

Image: For these experiments, the research team (left to right: Xiaozhe Shen, Pedro Nunes, Jie Yang and Xijie Wang) used SLAC’s MeV-UED, a high-speed “electron camera” that uses a powerful beam of electrons to detect subtle molecular movements in samples.

Credit: Dawn Harmer/SLAC National Accelerator Laboratory

Review of X-ray scattering methods with synchrotron radiation

Synchrotron light sources provide brilliant light with a focus on the X-ray region and have enormously expanded the possibilities for characterising materials. In the Reviews of Modern Physics, an international team now gives an overview of elastic and inelastic X-ray scattering processes, explains the theoretical background and sheds light on what insights these methods provide in physics, chemistry as well as bio- and energy related themes.

“X-ray scattering can be used to investigate and resolve a wide variety of issues from the properties and excitations of fuctional solids, to homogeneous and heterogeneous chemical processes and reactions or even the proton pathway during the splitting of water,” explains Prof. Dr. Alexander Föhlisch, who heads the Institute Methods and Instrumentation for Research with Synchrotron Radiation at HZB.

Read more on the HZB website

Image: Resonant X-ray excitation (purple) core excites the oxygen atom within a H2O molecule. This causes ultrafast proton dynamics. The electronic ground state potential surface (bottom) and the bond dynamics is captured by distinct spectral features in resonant inelastic X-ray scattering (right).

Credit: © Martin Künsting /HZB

Grain-scale deformation of a high entropy alloy


New research that exploited the unique strengths of the FAST beamline produced some of the first measurements of individual grain deformation in high entropy alloys. This data can help form accurate predictions of damage and failure processes in these emerging materials, critical for understanding their performance in real-world applications.

Grains and strains | A subset of the thousands of indexed grains are shown, along with their axial elastic strains (top) and maximum resolved sheer stress (bottom), at 4 positions indicated on the stress-strain curve. This microscopic detail is only available via high-energy x-ray techniques.

What is the discovery?


Conventional alloys are made primarily of one metal element, with a small substitution of other atoms to tune the properties (for example, 7.5% Cu and 92.5% Ag produces sterling silver). Recently, new types of high entropy alloys (HEAs) have been discovered, which are made by mixing many different metallic elements in nearly-equal proportions. HEAs can exhibit remarkably different properties from conventional alloys. In a new paper, a team lead by Jerard Gordon from the University of Michigan reports a high-energy x-ray study of the HEA made from mixing equal amounts of Co, Cr, Fe, Mn, and Ni. The team was able to use far-field high-energy diffraction microscopy (ff-HEDM) to understand the microscopic response of thousands of individual crystal grains in their sample when it is deformed under load. They were also able to compare the results with detailed crystal-plasticity models.

Read more on the CHESS website

Image: Grains and strains | A subset of the thousands of indexed grains are shown, along with their axial elastic strains (top) and maximum resolved sheer stress (bottom), at 4 positions indicated on the stress-strain curve. This microscopic detail is only available via high-energy x-ray techniques.

Tuning the magnetic anisotropy of lanthanides

The magnetism of lanthanide-directed nanoarchitectures on surfaces can be drastically affected by small structural changes. The study carried out in a collaboration between researchers from IMDEA Nanociencia and BOREAS beamline at ALBA reports the effect of the coordination environment in the reorientation of the magnetic easy axis of dysprosium-directed metal-organic networks on Cu(111). The authors show that the magnetic anisotropy of lanthanide elements on surfaces can be tailored by specific coordinative metal-organic protocols.

Recent findings have highlighted the potential of lanthanides in single atom magnetism. The stabilization of single atom magnets represents the ultimate limit on the reduction of storage devices. However, single standing atoms adsorbed on surfaces are not suitable for practical applications due to their high diffusion, i.e., low thermal stability. The next step towards more realistic systems is the coordination of these atoms in metal-organic networks.In 4f elements, the spin-orbit coupling (SOC) is larger than the crystal field, which might result in higher anisotropies. Furthermore, the crystal field acts as a perturbation of the SOC and can be tailored to increase the anisotropy by choosing an appropriate coordination environment. The strong localization of the 4f states reduces the hybridization with the surface, increasing the spin lifetimes, which is crucial, since a long magnetic relaxation time is mandatory for technological applications.

Read more on the ALBA website

Image: Cover picture showing the structure of the Dy-TPA network where C, H, O and Dy atoms are represented by black, red and green balls, respectively, the tilted orientation of the magnetic easy axis is represented by green arrows. 

Credit: ALBA

Developing antiviral drugs to treat COVID-19 infections

The rapid development of safe and effective vaccines has helped bring the pandemic under control. However, with the rise of variants and an uneven global distribution of vaccines, COVID-19 is a disease we will have to manage for some time.

Antiviral drugs that target the way the virus replicates may be the best option for treating outbreaks of COVID-19 in unvaccinated and under-vaccinated populations.

Using the Canadian Light Source (CLS) at the University of Saskatchewan, researchers from the University of Alberta (U of A) have isolated some promising inhibitors that could be used to treat COVID-19 infections. The scientists used the synchrotron remotely during the facility’s special COVID-19 call for proposals, an initiative created to support research to help fight the pandemic.

The team’s findings have been recently published in the European Journal of Medicinal Chemistry.

“With the help of the CLS, and the multiple teams here at the U of A, including the our lab and the Young lab in the Department of Biochemistry, Vederas lab in the Department of Chemistry, and Tyrrell team in Medical Microbiology and Immunology Department, we’ve been very efficient at developing a group of inhibitors that is very promising,” said Joanne Lemieux, a professor at the U of A.

Read more on the CLS website

Image: Michel Fodje, CLS Senior Scientist, using the CMCF beamline at the CLS, which was used for this project.

Credit: Canadian Light Source

Green hydrogen: Why do certain catalysts improve in operation?

Crystalline cobalt arsenide is a catalyst that generates oxygen during electrolytic water splitting in the production of hydrogen. The material is considered to be a model system for an important group of catalysts whose performance increases under certain conditions in the course of electrolysis. Now a HZB-team headed by Marcel Risch has observed at BESSY II how two simultaneous mechanisms are responsible for this. The catalytic activity of the individual catalysis centres decreases in the course of electrolysis, but at the same time the morphology of the catalyst layer also changes. Under favourable conditions, considerably more catalysis centres come into contact with the electrolyte as a result, so that the overall performance of the catalyst increases.

As a rule, most catalyst materials deteriorate during repeated catalytic cycles – they age. But there are also compounds that increase their performance over the course of catalysis. One example is the mineral erythrite, a mineral compound comprising cobalt and arsenic oxides with a molecular formula of (Co3(AsO4)2∙8H2O). The mineral stands out because of its purple colour. Erythrite lends itself to accelerating oxygen generation at the anode during electrolytic splitting of water into hydrogen and oxygen.

Read more in the HZB website

Image: Schematic of the electrochemical restructuring of erythrite. The fine needle-like structure melts during the conversion from a crystalline material to an amorphous one, which is porous like a Swiss cheese.

Credit: © HZB