Why having your head in the clouds could be a really good thing

The ATMOS research group in the NANOMO unit, led by Nønne Prisle, Associate Professor at the University of Oulu, are trying to find out what kind of chemistry is happening in cloud droplets and tiny nanometer-sized aerosol particles in the atmosphere. This knowledge could eventually, hopefully, give us more accurate theoretical models to understand the ongoing climate change.
– The only thing that can halter climate change is to stop emitting CO2. Nønne Prisle is very, very clear on that. Even so, she says, if we want to take any other step to try to counter climate change, we really need to know what’s going on in the clouds since these processes could be quite critical.
The ATMOS team are using the beamline HIPPIE at MAX IV being so-called commissioning experts, which means that the experiment is done both to provide useful data but also to verify the capacity and capability of the beamline experimental station.

>Read more on the MAX IV Laboratory website

Image: From left to right: Robert Seidel, Helmholtz Zentrum Berlin; Nønne Prisle, Kamal Raj and Jack Lin, University of Oulu at the HIPPIE beamline.

Understanding the viruses that kill cancer cells

Taking inspiration from virology to find better treatments for cancer

There are some viruses, called oncolytic viruses, that can be trained to target and kill cancer cells. Scientists in the field of oncolytics want to engineer these viruses to make them safer and more effective so they can be used to treat more people and different types of cancers. To achieve this, they first have to fully understand at the molecular level all the different ways that the virus has evolved to infect healthy cells and cause disease. A research team from Cardiff University set out to better understand how a protein on the surface of a virus often used to kill cancer, called an adenovirus, binds to human cells to cause an infection. Using X-ray crystallography, the team was able to determine the structure of one the key adenovirus proteins. Using this information and after extensive computational analysis, the research team realised the virus was not binding the receptor on the cells that was originally thought. This has important implications for the development of new virotherapies and engineering of viruses to treat cancer. The more thoroughly the researchers can understand how the adenoviruses interact with cancer cells at the molecular level, the more safe and effective treatments can be brought to clinical trial in the future.

>Read more on the Diamond Light Source website

“Molecular scissors” for plastic waste

A research team from the University of Greifswald and Helmholtz-Zentrum-Berlin (HZB) has solved the molecular structure of the important enzyme MHETase at BESSY II.

MHETase was discovered in bacteria and together with a second enzyme – PETase – is able to break down the widely used plastic PET into its basic building blocks. This 3D structure already allowed the researchers to produce a MHETase variant with optimized activity in order to use it, together with PETase, for a sustainable recycling of PET. The results have been published in the research journal Nature Communications.

Plastics are excellent materials: extremely versatile and almost eternally durable. But this is also exactly the problem, because after only about 100 years of producing plastics, plastic particles are now found everywhere – in groundwater, in the oceans, in the air, and in the food chain. Around 50 million tonnes of the industrially important polymer PET are produced every year. Just a tiny fraction of plastics is currently recycled at all by expensive and energy-consuming processes which yield either downgraded products or depend in turn on adding ‘fresh’ crude oil.

>Read more on the BESSY II at HZB website

Image: At the MX-Beamlines at BESSY II, Gottfried Palm, Gert Weber and Manfred Weiss could solve the 3D structure of MHETase.
Credit: F. K./HZB

Keeping nuclear power safe

Nuclear energy is clean, powerful, affordable, and zero-emission. A new study uses the Canadian Light Source (CLS) at the University of Saskatchewan to help ensure that waste from nuclear power plants remains safe and secure for thousands of years to come.
The project, led by Dan Kaplan and Dien Li, researchers at the Savannah River National Laboratory in South Carolina, looks at storing iodine, which is generated during uranium use, including in nuclear power generation.
Among the challenges of iodine management is its slow rate of decay—it has a half-life of 16 million years. Iodine is volatile and highly mobile in the environment, making containment critically important in nuclear waste management.
Currently, nuclear waste disposal sites use Ag-zeolite to sequester iodine from nuclear waste streams, which is then encased in concrete to prevent leaching.

>Read more on the Canadian Light Source website

Image: Samples of different formulations of cement that were tested for their ability to immobilize radioiodine.

Capturing protein motion at FemtoMAX

Your body contains a large variety of different proteins. They are big, complex molecules with diverse functions, from transporting oxygen in your blood to making your muscles contract.

Many proteins change their shape and move as they perform their task. A research team from the University of Gothenburg recently visited the beamline FemtoMAX to develop a method for studying moving proteins. They use electric fields to stimulate motion of the proteins in a sample while imaging them with the X-ray beam.
To study how proteins move, we need something to nudge them and then image them after they have changed position. Certain proteins are activated by light and in that case, the researchers can hit them with a laser pulse to provoke the motion. However, that is far from always the case. In the method being developed by the Gothenburg team, the proteins are instead subjected to an electric field that make them move.
The field is synchronized to the short, femtosecond scale (10-15 s) X-ray pulses delivered at beamline FemtoMAX. Each X-ray pulse hitting the sample is like taking a photograph using extremely short shutter speed, just like trying to get sharp images of players on a football field. The X-ray pulses at FemtoMAX are short enough to let the researchers capture the instantaneous position of the protein. By varying the time between the electric field and the X-ray pulse they can see different stages of the movement and even put the frames together as a movie of the protein motion.

>Read more on the MAX IV Laboratory website

Ghostly X-ray images could provide key info for analyzing X-ray laser experiments

SLAC researchers say their new method could make it easier to study interactions of ultrabright X-rays with matter

X-ray free-electron lasers (XFELs) produce incredibly powerful beams of light that enable unprecedented studies of the ultrafast motions of atoms in matter. To interpret data taken with these extraordinary light sources, researchers need a solid understanding of how the X-ray pulses interact with matter and how those interactions affect measurements.
Now, computer simulations by scientists from the Department of Energy’s SLAC National Accelerator Laboratory suggest that a new method could turn random fluctuations in the intensity of laser pulses from a nuisance into an advantage, facilitating studies of these fundamental interactions. The secret is applying a method known as “ghost imaging,” which reconstructs what objects look like without ever directly recording their images.

>Read more on the LCLS at SLAC website

Image: SLAC researchers suggest using the randomness of subsequent X-ray pulses from an X-ray laser to study the pulses’ interactions with matter, a method they call pump-probe ghost imaging.
Credit: Greg Stewart/SLAC National Accelerator Laboratory