Lightsource research on SARS-CoV-2

Coronaviruses are a family which includes the common cold, SARS, MERS and the current outbreak of the disease COVID-19, caused by the SARS-CoV-2 virus.
Several facilities of our collaboration have started research about SARS-CoV-2 virus or launched open calls for rapid access. This post will be updated regularly.

Publications on SARS-CoV-2 Rapid Access




Publications

The Canadian Light Source (Canada) has created a specific page highlighting their COVID-19 research: COVID-19 research at the Canadian Light Source

BESSY II at HZB (Germany) has set up a page where it shows their contributions to the research on SARS-CoV-2 , see here

DESY (Germany) has launched a new page dedicated to Corona Research: https://www.desy.de/news/corona_research/index_eng.html

Diamond Light Source (UK) has created a specific website “Coronavirus Science” with platforms for various audiences: scientific community, general public and the media: https://www.diamond.ac.uk/covid-19.html

ELETTRA (Italy) has launched a new page dedicated to COVID-19 research: https://www.elettra.eu/science/covid-19-research-at-elettra.html

The Photon Division of PSI (Switzerland) have collated many information linked to their institute on coronavirus-relevant research (recent publications, rapid access…): https://www.psi.ch/en/psd/covid-19

Published articles

2020.11.10 Diamond Light Source (UK), article and video on their website: From nought to sixty in six months… the unmasking of the virus behind COVID-19

2020.10.29 Canadian Light Source (Canada) video on their website: Studying how to damage the COVID-19 virus

2020.10.07 National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA) article on their website: Steady Progress in the Battle Against COVID-19

2020.10.07 Diamond Light Source (UK), article on their website: Structural Biology identifies new information to accelerate structure-based drug design against COVID-19

2020.10.06 MAX IV (Sweden), article on their website: Tackling SARS CoV-2 viral genome replication machinery using X-rays

2020.08.31 SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL): SARS-CoV-2 Spike Protein Targeted for Vaccine

2020.08.27 Diamond Light Source (UK), article on their website: Structural Biology reveals new target to neutralise COVID-19

2020.08.27 Canadian Light Source (Canada) video on their website: Developing more effective drugs

2020.08.25 Australian Synchrotron (ANSTO) (Australia) article on their website: More progress on understanding COVID-19

2020.08.24 DESY (Germany) article on their website: PETRA III provides new insights into COVID-19 lung tissue

2020.08.11 Australian Synchrotron (ANSTO) (Australia) article on their website: Unique immune system of the alpaca being used in COVID-19 research

2020.07.30 Swiss Light Source at PSI (Switzerland) article on their website: COVID-19 research: Anti-viral strategy with double effect

2020.07.29 National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA) article on their website: Ready to join the fight against COVID-19.

2020.07.20 ALBA (Spain) article on their website: A research team from Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC) uses synchrotron light to study the possible effect of an antitumoral drug of clinical use over the viral cycle of SARS-CoV-2 coronavirus. 

2020.07.15 ALS (USA) article on their website: Antibody from SARS Survivor Neutralizes SARS-CoV-2

2020.07.14 Diamond Light Source (UK), article on their website: Engineered llama antibodies neutralise Covid-19 virus

2020.06.17 European XFEL (Germany) article on their website: Pulling Together: A collaborative research approach to study COVID-19

2020.06.15 European XFEL (Germany) article on their website: Open Science COVID19 analysis platform online

2020.06.09 APS at Argonne National Laboratory (USA) article on their website: Novel Coronavirus Research at the Advanced Photon Source

2020.05. Società Italiana di Fisica publishes an article about research done at Elettra Sincrotrone Trieste (Italy) and the Advanced Light Source (CA / USA): Accelerator facilities support COVID-19-related research

2020.05.27 Diamond Light Source (UK), new animation video demonstrating the work that has been done at Diamond’s XChem facilities.

2020.05.19 Advanced Light Source (CA / USA), article about their latest results: X-ray Experiments Zero in on COVID-19 Antibodies

2020.05.15 Swiss Light Source (Switzerland), article about their first MX results: First MX results of the priority COVID-19 call

2020.05.14 MAX VI (Sweden), article about their research: Tackling SARS CoV-2 viral genome replication machinery using X-rays

2020.05.14 CHESS (NY/USA), article: CHESS to restart in June for COVID-19 research

2020.05.14 the LEAPS initiative brings together many of our European members. The initative published this brochure: Research at LEAPS facilities fighting COVID-19

2020.05.12 Diamond Light Source (UK), article about their collaboration in a consortium: UK consortium launches COVID-19 Protein Portal to provide essential reagents for SARS-CoV-2 research

2020.05.11 Advanced Photon Source (IL/USA), article: Studying Elements from the SARS-CoV-2 Virus at the Bio-CAT Beamline

2020.05.07 European XFEL (Germany), article: European XFEL open for COVID-19 related research

2020.05.06 ESRF (France), article: World X-ray science facilities are contributing to overcoming COVID-19

2020.04.29. BESSY II at HZB (Germany), article: Corona research: Consortium of Berlin research and industry seeks active ingredients

2020.04.29. Swiss Light Source and SwissFEL at PSI (Switzerland), interview series on the PSI website: Research on Covid-19

2020.04.23. PETRA III at DESY (Germany), article: X-ray screening identifies potential candidates for corona drugs

2020.04.21. MAX IV (Sweden), article: BioMAX switches to remote operations in times of COVID-19

2020.04.16. SLAC (CA / USA), article also with news about research at Stanford Synchrotron Radiation Lightsource (SSRL): SLAC joins the global fight against COVID-19

2020.04.15 Berkeley National Lab (CA/ USA), article with a focus on the research at the Advanced Light Source (ALS):
Staff at Berkeley Lab’s X-Ray Facility Mobilize to Support COVID-19-Related Research

2020.04.07 Diamond Light Source (UK), article: Call for Chemists to contribute to the fight against COVID-19
Crowdfunding: COVID-19 Moonshot

2020.04.07. ANSTO’s Australian Synchrotron (Victoria), article: Aiding the global research effort on COVID-19

2020.04.06. National Synchrotron Light Source II (NSLS-II) at Brookhaven Lab (NY / USA), article: Brookhaven Lab Mobilizes Resources in Fight Against COVID-19

2020.04.02. BESSY II at HZB (Germany), article: Corona research: Two days of measuring operation to find the right key

2020.03.31 Diamond Light Source (UK), article: Jointly with Exscientia and Scripps Research, Diamond aims to accelerate the search for drugs to treat COVID-19

2020.03.27 Argonne National Laboratory with the Advanced Photon Source (APS) and other facilities on-site (IL / USA), article: Argonne’s researchers and facilities playing a key role in the fight against COVID-19

2020.03.27 ANSTO’s Australian Synchrotron (Victoria), article and video: Helping in the fight against COVID-19

2020.03.25 PETRA III at DESY (Germany), article: Research team will X-ray coronavirus proteins

2020.03.23 Diamond Light Source (UK) releases its first animation explaining: SARS-CoV-2 Mpro Single Crystal Crystallography

2020.03.25 CERN Courrier (Switzerland) article about synchrotron research on SARS-CoV-2, written by Tessa Charles (accelerator physicist at the University of Melbourne currently based at CERN, completed her PhD at the Australian Synchrotron): Synchrotrons on the coronavirus frontline

2020.03.19 BESSY II at Helmholtz-Zentrum Berlin (Germany), research publication: Coronavirus SARS-CoV2: BESSY II data accelerate drug development

2020.03.19 BESSY II at Helmholtz-Zentrum Berlin (Germany), technique explanation webpage: Protein crystallography at BESSY II: A mighty tool for the search of anti-viral agents

2020.03.16 Diamond Light Source (UK), article on their “Coronavirus Science” website: Main protease structure and XChem fragment screen

2020.03.12. Elettra Sincrotrone (Italy), article on their website: New project to fight the spread of Coronavirus has been approved

2020.03.05. Advanced Photon Source (IL / USA), article on their website: APS Coronavirus Research in the Media Spotlight

2020.03.05. Advanced Photon Source (IL / USA), research publication: “Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2,” bioRXiv preprint  DOI: 10.1101/2020.03.02.968388, Article on their website (source: Northwestern University): New Coronavirus Protein Reveals Drug Target




Rapid access

Scientists can apply for rapid access at following facilities (only member facilities of Lightsources.org are referenced, the most recent published (or updated) call is mentioned first).

  • The National Synchrotron Light Source II (NSLS-II) in NY / USA is offering a streamlined and expedited rapid access proposal process for groups that require beam time for structural biology projects directly related to COVID-19. The Center for Biomolecular Structure team is supporting remote macromolecular crystallography experiments at Beamlines 17-ID-1 (AMX) and 17-ID-2 (FMX) in this research area. To submit a macromolecular crystallography proposal for COVID-19 related research, use the following form:
    https://surveys.external.bnl.gov/n/RapidAccessProposal.aspx
  • The Advanced Photon Source (APS) at Argonne National Laboratory in IL / USA  user program is operational to support:

·         Research on SARS-CoV-2 or other COVID-19-related research that addresses the current pandemic.

·         Critical, proprietary pharmaceutical research.

·         Mail-in/remote access work for any research involving low-risk samples and most medium-risk samples (as defined on the APS ESAF form).

·         Limited in situ research (set-up with one person, and ability to carry out majority of experiment safely remotely)
https://www.aps.anl.gov/Users-Information/About-Proposals/Apply-for-Time

PETRA III at DESY in Germany offers also Fast Track Access for Corona-related research:
https://photon-science.desy.de/users_area/fast_track_access_for_covid_19/index_eng.html

Australian Synchrotron at ANSTO makes its macromolecular crystallography beamlines available to structural biologists in response to the COVID-19 pandemic: https://www.ansto.gov.au/user-access

North American DOE lightsource facilities have created a platform to enable COVID-19 research. There you can find ressources and points of contact to request priority access:
Structural Biology Resources at DOE Light Sources

Elettra Sincrotrone Trieste in Italy opens to remote acces following beamlines: XRD1, XRD2, SISSI-BIO and MCX thanks to an CERIC-ERIC initiative:
https://www.ceric-eric.eu/2020/03/10/covid-19-fast-track-access/
http://www.elettra.eu/userarea/user-area.html

The Advanced Light Source (ALS) at LBNL in California / USA has capabilities relevant to COVID-19 and researchers can apply through their RAPIDD mechanism:
https://als.lbl.gov/apply-for-beamtime/

ALBA Synchrotron in Spain offers a COVID-19 RAPID ACCESS on all beamlines:
https://www.albasynchrotron.es/en/en/users/call-information

SOLARIS Synchrotron in Poland gives acces to its Cryo Electron Microscope thanks to an CERIC-ERIC initiative: https://www.ceric-eric.eu/2020/03/10/covid-19-fast-track-access/

Swiss Light Source and Swiss FEL at PSI in Switzerland offer priority access to combating COVID-19:
https://www.psi.ch/en/sls/scientific-highlights/priority-access-call-for-work-on-combating-covid-19

Diamond Light Source in the United Kingdom opened also a call for rapid access:
https://www.diamond.ac.uk/Users.html

Image: Electron density at the active site of the SARS-CoV-2 protease, revealing a fragment bound
Credit: Diamond Light Source

Canadian Light Source launches The Bison Project

The Canadian Light Source (CLS) at the University of Saskatchewan is launching The Bison Project, a research experience built with a reconciliation action framework for high school, adult basic education and undergraduate students.

The Bison Project integrates Traditional Knowledge and western science in a transformative research experience for First Nation, Métis, and Inuit students. The project seeks to reclaim and preserve the central and momentous historical contributions of First Nations, Métis and Inuit women towards saving bison from extinction through a holistic learning approach encompassing knowledge exchange and project-based learning.

This will include mail-in sample analysis of bison hair and grazing soil using CLS beamlines and multi-year projects with student-determined research. Students will participate in land-based sample gathering, research timeline development, and CLS beamline experiments exploring elemental mapping of bison hair and grazing soil.

The Bison Project will generate a collection of cultural expression resources to keep traditional knowledge alive through oral tradition.

Read more on the CLS website

Image: Adult bison and calves at Nachusa Grasslands.

Credit: The Nature Conservancy

Quantum X-ray Microscope underway to enable “ghost image” biomolecules

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have begun building a quantum-enhanced x-ray microscope at the National Synchrotron Light Source II (NSLS-II). This groundbreaking microscope, supported by the Biological and Environmental Research progam at DOE’s Office of Science, will enable researchers to image biomolecules like never before.

NSLS-II is a DOE Office of Science User Facility where researchers use powerful x-rays to “see” the structural, chemical, and electronic makeup of materials down to the atomic scale. The facility’s ultrabright light already enables discoveries in biology, helping researchers uncover the structures of proteins to inform drug design for a variety of diseases—to name just one example.

NSLS-II is a DOE Office of Science User Facility where researchers use powerful x-rays to “see” the structural, chemical, and electronic makeup of materials down to the atomic scale. The facility’s ultrabright light already enables discoveries in biology, helping researchers uncover the structures of proteins to inform drug design for a variety of diseases—to name just one example.

Read more on the Brookhaven National Laboratory website

Image: An artist’s interpretation of ghost imaging. In this research technique, scientists split an x-ray beam (represented by the thick pink line) into two streams of entangled photons (thinner pink lines). Only one of these streams of photons passes through the scientific sample (represented by the clear circle), but both gather information. By splitting the beam, the sample being studied is only exposed to a fraction of the x-ray dose.

Graphite electrodes for rechargeable batteries investigated

Rechargeable graphite dual ion batteries are inexpensive and powerful.

A team of the Technical University of Berlin has investigated at the EDDI Beamline of BESSY II how the morphology of the graphite electrodes changes reversibly during cycling (operando).

The 3D X-ray tomography images combined with simultaneous diffraction now allow a precise evaluation of the processes, especially of changes in the volume of the electrodes. This can help to further optimise graphite electrodes.

Read more on the HZB website

Image: The tomogram during the charging process shows the spatially resolved changes in the graphite electrode thickness of a rechargeable aluminium ion battery in a discharged and charged state.

Credit: © HZB

“foot-2-foot” interaction sheds light on bacterial conjugation

Bacteria possess mechanisms to establish communication between cells. This is especially important in bacterial conjugation, a process that allows bacteria to share genetic material. This is often used by bacteria to transfer antibiotic resistance genes and other virulence factors to neighbor cells, increasing the antibiotic resistance spread.

Now, a research team of ALBA scientists report the structural mechanism by which two proteins, Rap and Rco, act together to regulate conjugation. Rco is a repressor of conjugation, whereas Rap binds Rco and prevents Rco-mediated conjugation repression, thus resulting in an activation of the conjugation mechanism. The main results of the study show that Rap contains a binding pocket were a short peptide can bind, producing structural changes in Rap that forces its tetramerization, releasing Rco for blocking conjugation. Tetramerization occurs through an interaction that scientists named “foot-2-foot”, which differs significantly from the model proposed for other proteins of the Rap family.

Read more on the ALBA website

Image: RappLS20 tetramerization, side view of the peptide-bound tetramer. The red arrows indicate the loops connecting helices H4 and H5. (C) Zoom of the area around the N-terminus of helix H4, showing the insertion of this helix into the opposite monomer. The homotetramerization caused by the foot-2-foot interactions of the NTDs of RappLS20 provides an explanation for the activation of the RcopLS20 partner. In the absence of the peptide, the NTDs are positioned such that they allow the interaction with RcopLS20. However, upon binding the signaling peptide, the NTDs shift outwards, facilitating the formation of the homotetramer, leading to a change of the interaction surface of the NTDs that is no longer available for interactions with RcopLS20

Uncovering the secrets of a fish with a super strong jaw

Black drum is a fish from the United States with one of the strongest bite force in the fish world. It can easily crunch through shells, its main source of food. Weight for weight, it has a bite that is as strong as the bite of a crocodile.

The jaw of this fish has scientists fascinated: it is not made of cortical bone, like most jaws, and it has a 3D arrangement of beams. “This is something never seen before in any other animal. It looks like a sponge… how can such a structure, which seems weak, carry all this load?” queries project leader Ron Shahar, veterinarian and engineer at The Hebrew University of Jerusalem in Israel. 

In the quest to find how this structure is built and how it operates, Shahar is joined by Paul Zaslansky, a dentist at the Charité Hospital in Berlin (Germany), as well as physicists Alexander Rack and Marta Majkut at the ESRF.

Read more on the ESRF website

Image: A detailed view of the set-up with the jaw and all the teeth

Credit: A. Rack

Measuring interfaces in 3D printing

3D printing (3DP) leads to many defects and interfaces within printed parts. Failure during performance in the road-to-road and layer-by-layer processed parts appears at these interfaces and defects. Understanding the root cause of these limitations is key. 

Only by mapping the sample via µ-beam SAX was it possible to determine the source of a peculiar defect and interface morphology. To the surprise of the scientists the alignment of nanoparticles is not uniform and not random within roads and layers of an epoxy carbon fiber reinforced composite and explains some of the achieved mechanical properties and microscopy results.

Read more on the Cornell High Energy Synchrotron Source (CHESS) website

Image: 3D printing degree of orientation

Credit: CHESS

Effective new target for breast cancer treatment

An international study led by scientists at the University of Sussex has provided strong evidence for an effective new target for breast cancer treatment. The five-year study, called “The structure-function relationship of oncogenic LMTK3” published in Science Advances, involved researchers from seven institutions across three countries including Diamond. 

The study suggests that LMTK3 inhibitors could be effectively used for the treatment of breast cancer, and potentially other types of cancer. The structure of oncogenic LMTK3 (Lemur Tyrosine Kinase 3 ) determines its role and functions allowing drug inhibition as a new therapeutic strategy.

It is hoped the research will allow the further development and optimisation of LMTK3 inhibitors as a new type of orally-administered anticancer drug for patients and have potential value not only for breast cancer patients but also for lung, stomach, thyroid and bladder cancer patients.

Read more on the Diamond Light Source website

Image: Crystal structure of LMTK3
Credit: University of Sussex

Hummus for cows?

Identifying the best chickpea crops for cattle feed

While hummus used to be an exotic spread enjoyed only in the Middle East, it has become a staple in grocery stores throughout the world. Recently, the savory dish has gained popularity amongst a new fan base: herds of cows.

As chickpea production increases around the world, those crops not suitable for human consumption are being recycled into cattle feed as a partial replacement for soybean meal and cereal grains, explained Dr. Peiqiang Yu, a professor with the University of Saskatchewan (USask). “However, until now there was limited information about the nutritional values for this newly developed chickpea as ruminant feed,” he said.

In a recent study, Yu and colleagues showed that the Canadian Light Source (CLS) at USask can effectively image the molecular structure of chickpea seeds to determine which varieties have the highest nutritional value and would best serve as a feed for beef and dairy cattle.

Read more on the Canadian Light Source website

Image: Synchrotron techniques can offer insights into which chickpea crops will perform best before they are produced on a mass scale for cattle.

Credit: Canadian Light Source

New versatile spectro-electrochemical cell

Equipment improves the investigation of materials for fuel cells, batteries and electrolysers

Fossil fuels are the main source of energy in the world. However, the search for clean, renewable, and cheap energy sources has intensified recently, especially with the growing consensus that the rise in the average temperature of the planet is caused by human action. In this context, electrochemical devices, which involve reactions for the transformation of chemical energy into electrical energy, appear as a viable option to fossil fuels.

Among those available are fuel cells and batteries, capable of converting the chemical energy of molecules into electrical energy and storing it, and electrolysers capable of converting low-cost molecules into more economically attractive molecules. Thus, to improve the performance of these electrochemical devices, it is essential to understand the processes that occur between their components, more precisely in the interaction between the electrodes and the electrolyte.

For this reason, researchers from the State University of Campinas (UNICAMP), in collaboration with researchers from the Brazilian Center for Research in Energy and Materials (CNPEM) and the Federal University of São Carlos (UFSCar), developed an electrochemical cell [1] with the objective to perform various types of in situ experiments. These experiments allow direct access to the dynamics of electrochemical reactions in real time and make it possible to understand the processes that occur in the system from an atomic and molecular point of view. Hence, it is possible to optimize the materials that are part of fuel cells, batteries and electrolysers mentioned, and also of devices such as supercapacitors and electrochemical sensors, among others.

Read more on the LNLS website

Image: Figure 1: A, B) Schematic drawings of the SEC: threaded lip (1); aperture for passing the radiation beam and, in the case of a photoelectrochemical experiment, to illuminate the electrode with a solar simulator or LEDs (2); window (3); O-rings (4, 5, 17); CE (6 16); SEC body – part 1 (7); chamber for the electrolyte, the CE and the RE (8); electrolyte inlet and outlet (9, 11, 13), WE inlet (10); RE inlet (12); RE (14); CE inlet (15); bolt (18); SEC body – part 2 (19); WE (20).

World Science Day spotlight: Collaborating to tackle SARS-CoV-2

Science facilities worldwide have been working around the clock to drive forward SARS-CoV-2 research to alleviate the suffering that the COVID-19 pandemic is currently causing.

Today (November 10), in recognition of World Science Day for Peace and Development, the collective efforts of thousands of scientists and technical experts is being marked through this year’s focus – “Science for and with Society in dealing with the global pandemic.”

At the start of the pandemic, the facilities that make up the Lightsources.org collaboration were swift to ensure that rapid access was available for researchers working on SARS-CoV-2. This has led to a large body of research being undertaken at synchrotrons and free electron lasers.  The aims have been varied and include mapping the structure of the virus; finding binding sites for drugs to lock into; screening existing drugs to establish if they have a role to play in treating patients; understanding the impact of the virus on the lungs; and understanding the immune response so vaccines can be designed to illicit an immune response in the body.

A dedicated, regularly updated, web page – Lightsource research for SARS-CoV-2 – draws together all this research, along with other publications and resources.  It also includes links for researchers wishing to gain rapid access for their SARS-CoV-2 experiments.

The World Science Day for Peace and Development was created as a follow-up to the World Conference on Science, organised jointly by UNESCO and the International Council for Science in Budapest (Hungary) in 1999.

By linking science more closely with society, World Science Day for Peace and Development aims to ensure that citizens are kept informed of developments in science. It also underscores the role scientists play in broadening our understanding of the remarkable, fragile planet we call home and in making our societies more sustainable.

Learn more about World Science Day for Peace and Development on the UNESCO website

Image: World Science Day for Peace and Development 2020 poster

Credit: UNESCO

“Nano-Barber poles”: Helical surface magnetization in nanowires

Nanomagnetism is nowadays expanding into three dimensions, triggered by the discovery of new magnetic phenomena and their potential use in applications. This shift towards 3D structures should be accompanied by strategies and methodologies to map the tridimensional spin textures associated.

A new study fruit of a collaboration of researchers from two beamlines at ALBA Synchrotron (CIRCE and MISTRAL), with the participation of the Universidad Complutense de MadridIMDEA Nanociencia and the Universidad de Salamanca shows that cylindrical nanowires have at the center a magnetization aligned with the axis of the wire and at the surface a magnetization that describes helical lines as the barber poles. The helicity provides chirality to the magnetic configuration since it can be right or left-handed. Researchers found out that two adjacent magnetic domains having opposite chirality are more difficult to move than two adjacent domains with the same chirality. This result evidences the role of the chirality on the dynamics of the domain walls that might be used as a practical variable for magnetic data storage.

Read more on the ALBA website

Image: Figure. (Left) Barber pole illustrating the helical lines that the magnetization describes at the surface of the wires. (Right) Schematics of the configuration of the magnetization of the initial state of the nanowire together with the magnetic images before and after the application of magnetic field pulses. In the initial state, the two domain walls signaled with orange arrows separate domains with the same chirality. Note that the head-to-head or tail-to-tail domains have the same chirality in spite of having opposite signs of surface magnetization. The green arrow separates two domains of different chirality since while having the same axial orientation, the surface helicity is opposite. Magnetic field pulses of 120 mT move the walls separating domains with the same chirality but not the green wall separating opposite chirality.

Germanium telluride’s hidden properties revealed

Germanium Telluride is an interesting candidate material for spintronic devices. In a comprehensive study at BESSY II, a Helmholtz-RSF Joint Research Group has now revealed how the spin texture switches by ferroelectric polarization within individual nanodomains.

Germanium telluride (GeTe) is known as a ferrolectric Rashba semiconductor with a number of interesting properties. The crystals consist of nanodomains, whose ferrolectric polarization can be switched by external electric fields. Because of the so-called Rashba effect, this ferroelectricity can also be used to switch electron spins within each domain. Germanium telluride is therefore an interesting material for spintronic devices, which allow data processing with significantly less energy input.

Russian German Cooperation

Now a team from HZB and the Lomonosov Moscow State University, which has established a Helmholtz-RSF Joint Research Group, has provided comprehensive insights into this material at the nanoscale. The group is headed by physical chemist Dr. Lada Yashina (Lomonosov State University) and HZB physicist Dr. Jaime Sánchez-Barriga. “We have examined the material using a variety of state-of-the-art methods to not only determine its atomic structure, but also the internal correlation between its atomic and electronic structure at the nanoscale,” says Lada Yashina, who produced the high-quality crystalline samples in her laboratory.

Read more on the BESSY II website

Image: The Fermi surface of multidomain GeTe (111) bulk single crystal measured with high-resolution angle-resolved photoemission at BESSY II. © HZB

Dust travelled thousands of miles to enrich hawaiian soils

With its warm weather and sandy beaches, Hawaii is a magnet for tourists every year. This unique ecosystem also attracts soil scientists interested in what surprises may lie beneath their feet.

In a recent paper published in Geoderma, European researchers outline how they used the rich soils of Hawaii to study the critical movement of phosphorous through the environment. By better understanding the amount and type of phosphorus in the soil, they can help crops become more successful and maintain the health of our ecosystems for years to come.

The project was led by Agroscope scientist Dr. Julian Helfenstein, Prof. Emmanuel Frossard with the Institute of Agricultural Sciences, ETH Zurich; and Dr. Christian Vogel, a researcher at the Federal Institute for Materials Research and Testing in Berlin.

The team used the Canadian Light Source (CLS) at the University of Saskatchewan to help analyze the different types of phosphorus in their samples and track their origins.

Read more on the Canadian Light Source website

Image: Dr. Christian Vogel using the VLS-PGM beamline to analyze a sample at the CLS.

A new approach for studying electric charge arrangements in a superconductor

X-ray scattering yields new information on “charge density waves”

High-temperature superconductors are a class of materials that can conduct electricity with almost zero resistance at temperatures that are relatively high compared to their standard counterparts, which must be chilled to nearly absolute zero—the coldest temperature possible. The high-temperature materials are exciting because they hold the possibility of revolutionizing modern life, such as by facilitating ultra-efficient energy transmission or being used to create cutting-edge quantum computers.

One particular group of high-temperature superconductors, the cuprates, has been studied for 30 years, yet scientists still cannot fully explain how they work: What goes on inside a “typical” cuprate?

Piecing together a complete picture of their electronic behavior is vital to engineering the “holy grail” of cuprates: a versatile, robust material that can superconduct at room temperature and ambient pressure.

Read more on the NSLS-II website

Image: Brookhaven Lab scientist Mark Dean used the Soft Inelastic X-Ray (SIX) beamline at the National Synchrotron Light Source II (NSLS-II) to unveil new insights about a cuperates, a particular group of high-temperature superconductors. Credit: BNL

Get out your vacuum: Scientists find harmful chemicals in household dust

Since the 1970s, chemicals called brominated flame retardants (BFRs) have been added to a host of consumer and household products, ranging from electronics and mattresses to upholstery and carpets. While they were intended to improve fire safety, one form — polybrominated diphenyl ethers, or PBDEs — has proved harmful to human health, specifically our hormonal systems.

Although the use of PBDEs has been restricted in Canada since 2008, older household electronics and furniture with these compounds are still in use. Additionally, the process used to add this chemical to manufactured goods attached the particles very loosely. As a result, the compound tends to shed over time through normal wear and tear.

A growing body of evidence suggests that concentrations of this chemical are higher indoors and that it is present in dust. A team of researchers from the Canadian Light Source (CLS) at the University of Saskatchewan and Memorial University set out to determine whether they could find bromine in household dust using synchrotron X-ray techniques.

Read more on the Canadian Light Source website

Image: Dr. Peter Blanchard, CLS Associate Scientist, standing in the HXMA beamline at the CLS.